Skip to main content

Advertisement

Log in

Levitin–Polyak well-posedness by perturbations of inverse variational inequalities

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The purpose of this paper is to investigate Levitin–Polyak type well-posedness for inverse variational inequalities. We establish some metric characterizations of Levitin–Polyak α-well-posedness by perturbations. Under suitable conditions, we prove that Levitin–Polyak well-posedness by perturbations of an inverse variational inequality is equivalent to the existence and uniqueness of its solution. Moreover, we show that Levitin–Polyak well-posedness by perturbations of an inverse variational inequality is equivalent to Levitin–Polyak well-posedness by perturbations of an enlarged classical variational inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Del Prete I., Lignola M.B., Morgan J.: New concepts of well-posedness for optimization problems with variational inequality constraints. JIPAM. J. Inequal. Pure Appl. Math. 4(1) (2003) (Article 5)

  2. Dontchev A.L., Zolezzi T.: Well-Posed Optimization Problems. Lecture Notes in Math, vol. 1543. Springer, Berlin (1993)

    Google Scholar 

  3. Du D.Z., Pardalos P.M., Wu W.L.: Mathematical Theory of Optimization. Kluwer Academic Publishers, Boston (2001)

    MATH  Google Scholar 

  4. Fang Y.P., Huang N.J., Yao J.C.: Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems. J. Glob. Optim. 41, 117–133 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang Y.P., Huang N.J., Yao J.C.: Well-posedness by perturbations of mixed variational inequalities in Banach spaces. Eur. J. Oper. Res. 201(3), 682–692 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Han Q.M., He B.S.: A predict-correct method for a variant monotone variational inequality problems. Chin. Sci. Bull. 43, 1264–1267 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. He B.S.: A Goldstein’s type projection method for a class of variant variational inequalities. J. Comput. Math. 17, 425–434 (1999)

    MathSciNet  MATH  Google Scholar 

  8. He B.S.: Inexact implicit methods for monotone general variational inequalities. Math. Prog. 86, 199–217 (1999)

    Article  MATH  Google Scholar 

  9. He, B.S., Liu, H.X.: Inverse variational inequalities in the economic field: applications and algorithms (2006) (in Chinese, Sciencepaper Online)

  10. He B.S., He X., Liu H.X.: Solving a class of constrained black-box inverse variational inequalities. Eur. J. Oper. Res. 204(3), 391–401 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. He X., Liu H.X.: Inverse variational inequalities with projection-based solution methods. Eur. J. Oper. Res. 208, 12–18 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hu R., Fang Y.P.: Well-posedness of inverse variational inequalities. J. Convex Anal. 15(2), 427–437 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Hu R., Fang Y.P.: Levitin–Polyak well-posedness of variational inequalities. Nonlinear Anal. TMA 72(1), 373–381 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu R., Fang Y.P., Huang N.J.: Levitin–Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. J. Ind. Manag. Optim. 6(3), 465–481 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang X.X., Yang X.Q.: Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J. Optim. 17, 243–258 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang X.X., Yang X.Q.: Levitin–Polyak well-posedness of constrained vector optimization problems. J. Glob. Optim. 37, 287–304 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang X.X., Yang X.Q.: Levitin–Polyak well-posedness in generalized variational inequality problems with functional constraints. J. Ind. Manag. Optim. 3, 671–684 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang X.X., Yang X.Q., Zhu D.L.: Levitin–Polyak well-posedness of variational inequality problems with functional constraints. J. Glob. Optim. 44(2), 159–174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Klein E., Thompson A.C.: Theory of Correspondences. Wiley, New York (1984)

    MATH  Google Scholar 

  20. Kuratowski K.: Topology, vols. 1, 2. Academic Press, New York (1968)

    Google Scholar 

  21. Levitin E.S., Polyak B.T.: Convergence of minimizing sequences in conditional extremum problems. Soveit Math. Dokl. 7, 764–767 (1966)

    MATH  Google Scholar 

  22. Li S.J., Zhang W.Y.: Hadamard well-posed vector optimization problems. J. Glob. Optim. 46(3), 383–393 (2010)

    Article  MATH  Google Scholar 

  23. Lignola M.B., Morgan J.: Well-posedness for optimization problems with constraints defined by variational inequalities having a unique solution. J. Glob. Optim. 16(1), 57–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lignola M.B., Morgan J.: Approximating solutions and α-well-posedness for variational inequalities and Nash equilibria. In: Decision and Control in Management Science, pp. 367–378. Kluwer Academic Publishers, Boston (2002)

    Google Scholar 

  25. Lignola M.B.: Well-posedness and L-well-posedness for quasivariational inequalities. J. Optim. Theory Appl. 128(1), 119–138 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lucchetti R., Patrone F.: A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities. Numer. Funct. Anal. Optim. 3(4), 461–476 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pang J.S., Yao J.C.: On a generalization of a normal map and equation. SIAM J. Control Optim. 33, 168–184 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pardalos P.M., Resende M.: Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  29. Pardalos P.M., Rassias T.M., Khan A.A.: Nonlinear Analysis and Variational Problems. Springer, New York (2010)

    Book  MATH  Google Scholar 

  30. Tykhonov A.N.: On the stability of the functional optimization problem. USSR J. Comput. Math. Math. Phys. 6, 631–634 (1966)

    Google Scholar 

  31. Zhang W.Y., Li S.J., Teo K.L.: Well-posedness for set optimization problems. Nonlinear Anal. TMA 71(9), 3769–3778 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zolezzi T.: Well-posedness criteria in optimization with application to the calculus of variations. Nonlinear Anal. TMA 25, 437–453 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zolezzi T.: Extended well-posedness of optimization problems. J. Optim. Theory Appl. 91, 257–266 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya-Ping Fang.

Additional information

This work was supported by the National Natural Science Foundation of China (11001187) and the Scientific Research Foundation of CUIT(KYTZ201128).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, R., Fang, YP. Levitin–Polyak well-posedness by perturbations of inverse variational inequalities. Optim Lett 7, 343–359 (2013). https://doi.org/10.1007/s11590-011-0423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0423-y

Keywords

Navigation