Skip to main content
Log in

Performance of convex underestimators in a branch-and-bound framework

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The efficient determination of tight lower bounds in a branch-and-bound algorithm is crucial for the global optimization of models spanning numerous applications and fields. The global optimization method \(\alpha \)-branch-and-bound (\(\alpha \)BB, Adjiman et al. in Comput Chem Eng 22(9):1159–1179, 1998b, Comput Chem Eng 22(9):1137–1158, 1998a; Adjiman and Floudas in J Global Optim 9(1):23–40, 1996; Androulakis et al. J Global Optim 7(4):337–363, 1995; Floudas in Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin, 2000; Maranas and Floudas in J Chem Phys 97(10):7667–7678, 1992, J Chem Phys 100(2):1247–1261, 1994a, J Global Optim 4(2):135–170, 1994), guarantees a global optimum with \(\epsilon \)-convergence for any \(\mathcal {C}^2\)-continuous function within a finite number of iterations via fathoming nodes of a branch-and-bound tree. We explored the performance of the \(\alpha \)BB method and a number of competing methods designed to provide tight, convex underestimators, including the piecewise (Meyer and Floudas in J Global Optim 32(2):221–258, 2005), generalized (Akrotirianakis and Floudas in J Global Optim 30(4):367–390, 2004a, J Global Optim 29(3):249–264, 2004b), and nondiagonal (Skjäl et al. in J Optim Theory Appl 154(2):462–490, 2012) \(\alpha \)BB methods, the Brauer and Rohn+E (Skjäl et al. in J Global Optim 58(3):411–427, 2014) \(\alpha \)BB methods, and the moment method (Lasserre and Thanh in J Global Optim 56(1):1–25, 2013). Using a test suite of 40 multivariate, box-constrained, nonconvex functions, the methods were compared based on the tightness of generated underestimators and the efficiency of convergence of a branch-and-bound global optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IBM: IBM ILOG CPLEX Optimization Studio (2013). http://www.cplex.com

  2. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs-II. Implementation and computational results. Comput. Chem. Eng. 22(9), 1159–1179 (1998b)

  3. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice-differentiable constrained NLPs-I. Theoretical advances. Comput. Chem. Eng. 22(9), 1137–1158 (1998a)

  4. Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems. J. Global Optim. 9(1), 23–40 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Akrotirianakis, I.G., Floudas, C.A.: A new class of improved convex underestimators for twice continuously differentiable constrained NLPs. J. Global Optim. 30(4), 367–390 (2004a)

  6. Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators: Box-constrained NLP problems. J. Global Optim. 29(3), 249–264 (2004b)

  7. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: a global optimization method for general constrained nonconvex problems. J. Global Optim. 7(4), 337–363 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bendtsen, C., Stauning, O.: Fadbad, a flexible C++ package for automatic differentiation. Department of Mathematical Modelling, Technical University of Denmark (1996)

  10. Brauer, A.: Limits for the characteristic roots of a matrix. II. Duke Math. J. 14(1), 21–26 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  11. Floudas, C.A.: Deterministic Global Optimization: Theory, Methods and Applications, vol. 37. Springer, Berlin (2000)

    Google Scholar 

  12. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization, vol. 33. Kluwer Academic Publishers, Dordrecht (1999)

  13. Gershgorin, S.A.: Über die abgrenzung der eigenwerte einer matrix. Izv. Akad. Nauk SSSR, Ser. Fiz.-Mat. 6, 749–754 (1931)

    Google Scholar 

  14. Gill, P.E., Murray, W., Saunders, M.A.: User’s guide for SNOPT 5.3: a Fortran package for large-scale nonlinear programming. Technical Report (1999)

  15. Gill, P.E., Murray, W., Saunders, M.A., Wright, M.H.: User’s guide for NPSOL (Version 4.0): a Fortran package for nonlinear programming. Technical Report, DTIC Document (1986)

  16. Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for \({\cal {C}}^2\)-continuous problems: II. Multivariate functions. J. Global Optim. 42(1), 69–89 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hansen, E.R.: Sharpness in interval computations. Reliab. Comput. 3(1), 17–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hladík, M.: The effect of hessian evaluations in the global optimization \(\alpha \)BB method, Preprint (2013). http://arxiv.org/abs/1307.2791

  19. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz gradients for global optimization in a one-point-based partitioning scheme. J. Comput. Appl. Math. 236(16), 4042–4054 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasserre, J., Thanh, T.: Convex underestimators of polynomials. J. Global Optim. 56(1), 1–25 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with lipschitz functions and lipschitz first derivatives. SIAM J. Optim. 23(1), 508–529 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Maranas, C.D., Floudas, C.A.: A global optimization approach for Lennard–Jones microclusters. J. Chem. Phys. 97(10), 7667–7678 (1992)

    Article  Google Scholar 

  23. Maranas, C.D., Floudas, C.A.: A deterministic global optimization approach for molecular structure determination. J. Chem. Phys. 100(2), 1247–1261 (1994a)

    Article  MathSciNet  Google Scholar 

  24. Maranas, C.D., Floudas, C.A.: Global minimum potential energy conformations of small molecules. J. Global Optim. 4(2), 135–170 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  25. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Global Optim. 7(2), 143–182 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. Nonconvex Optim. Appl. 74, 327–352 (2003)

    Article  MathSciNet  Google Scholar 

  28. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Global Optim. 29(2), 125–155 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Meyer, C.A., Floudas, C.A.: Convex underestimation of twice continuously differentiable functions by piecewise quadratic perturbation: spline \(\alpha \)BB underestimators. J. Global Optim. 32(2), 221–258 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42(3), 969–984 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rohn, J.: Bounds on eigenvalues of interval matrices. Zeitschrift fr Angewandte Mathematik und Mechanik 78(S3), 1049–1050 (1998)

    Article  MathSciNet  Google Scholar 

  32. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  33. Skjäl, A., Westerlund, T.: New methods for calculating \(\alpha \)BB-type underestimators. J. Global Optim. 58(3), 411–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Skjäl, A., Westerlund, T., Misener, R., Floudas, C.: A generalization of the classical \(\alpha \)BB convex underestimation via diagonal and nondiagonal quadratic terms. J. Optim. Theory Appl. 154(2), 462–490 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Surjanovic, S., Bingham, D.: Virtual library of simulation experiments: test functions and datasets (2013). http://www.sfu.ca/~ssurjano/optimization.html

  36. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Global Optim. 20(2), 133–154 (2001)

    Article  MathSciNet  Google Scholar 

  37. Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math. Program. 93(2), 247–263 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Whaley, R.C., Petitet, A.: Minimizing development and maintenance costs in supporting persistently optimized BLAS. Softw. Pract. Experience 35(2), 101–121 (2005)

    Article  Google Scholar 

  39. Yamashita, M., Fujisawa, K., Nakata, K., Nakata, M., Fukuda, M., Kobayashi, K., Goto, K.: A high-performance software package for semidefinite programs: SDPA 7. Technical Report B-460, Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo, Japan (2010)

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the National Science Foundation (NSF CBET-0827907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis A. Guzman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzman, Y.A., Hasan, M.M.F. & Floudas, C.A. Performance of convex underestimators in a branch-and-bound framework. Optim Lett 10, 283–308 (2016). https://doi.org/10.1007/s11590-014-0799-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0799-6

Keywords

Navigation