Skip to main content
Log in

On computational search for Nash equilibrium in hexamatrix games

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The problem of numerical finding of a Nash equilibrium in a 3-player polymatrix game is considered. Such a game can be completely described by six matrices, and it turns out to be equivalent to the solving a nonconvex optimization problem with a bilinear structure in the objective function. Special methods of local and global search for the optimization problem are proposed and investigated. The results of computational solution of the test game are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Von Neumann, J., Morgenstern, O.: Theory of games and economic behavior. Princeton University Press (1944)

  2. Owen, G.: Game Theory. Academic Press, UK (1995)

    MATH  Google Scholar 

  3. Pang, J.-S.: Three modeling paradigms in mathematical programming. Math. Program. Ser. B. 125(2), 297–323 (2010)

    Article  MATH  Google Scholar 

  4. Panicucci, B., Pappalardo, M., Passacantando, M.: On solving generalized Nash equilibrium problems via optimization. Optim. Lett. 3, 419–435 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Facchinei, F., Sagratella, S.: On the computation of all solutions of jointly convex generalized Nash equilibrium problems. Optim. Lett. 5, 531–547 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Altangerel, L., Battur, G.: Perturbation approach to generalized Nash equilibrium problems with shared constraints. Optim. Lett. 6, 1379–1391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Orlov, A.V., Strekalovsky, A.S.: Numerical search for equilibria in bimatrix games. Comput. Math. Math. Phys. 45(6), 947–960 (2005)

    MathSciNet  Google Scholar 

  8. Lemke, C.E., Howson, J.J.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 12, 413–423 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Audet, C., Belhaiza, S., Hansen, P.: Enumeration of all the extreme equilibria in game theory: bimatrix and polymatrix games. J. Optim. Theory Appl. 129(3), 349–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Strekalovsky, A.S., Orlov, A.V.: Bimatrix Games and Bilinear Programming (in Russian). FizMatLit, Moscow (2007)

    Google Scholar 

  11. Vasilyev, I.L., Klimentova, K.B., Orlov, A.V.: A parallel search of equilibrium points in bimatrix games (in Russian). Numer. Methods Prog. 8:233–243 (2007). Accessed 28 July 2014. http://num-meth.srcc.msu.ru/english/index.html

  12. Yanovskaya, E.B.: Equilibrium points in polymatrix games (in Russian). Latv. Math. Collect. 8, 381–384 (1968)

    Google Scholar 

  13. Strekalovsky, A.S., Enkhbat, R.: Polymatrix games and optimization problems. Autom. Remote Control. 75(4), 632–645 (2014)

    Article  MathSciNet  Google Scholar 

  14. Mills, H.: Equilibrium points in finite games. J. Soc. Ind. Appl. Math. 8(2), 397–402 (1960)

    Article  MATH  Google Scholar 

  15. Strekalovsky, A.S.: Elements of nonconvex optimization (in Russian). Nauka, Novosibirsk (2003)

    Google Scholar 

  16. Strekalovsky, A.S.: On the minimization of the difference of convex functions on a feasible set. Comput. Math. Math. Phys. 43(3), 380–390 (2003)

    MathSciNet  Google Scholar 

  17. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in science and engineering, pp. 465–502. Springer, New York (2014)

    Chapter  Google Scholar 

  18. Strekalovsky, A.S., Orlov, A.V.: A new approach to nonconvex optimization. Numer. Methods Prog, 8:160–176 (2007). Accessed 28 July 2014. http://num-meth.srcc.msu.ru/english/index.html

  19. Nash, J.F.: Equilibrium points in \(n\)-person games. Proc. Nat. Acad. Sci. USA 36, 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  20. Horst, R., Tuy, H.: Global optimization. Deterministic approaches. Springer, Berlin (1993)

    Book  Google Scholar 

  21. Sergeyev, Ya. D., Kvasov, D.E.: Diagonal global optimization methods (in Russian). FizMatLit, Moscow (2008)

  22. Sergeyev, Ya.D., Strongin, R.G., Lera, D.: Introduction to global optimization exploiting space-filling curves. Springer, New York (2013)

  23. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (2000)

    Google Scholar 

  24. Vasilyev, F.P.: Optimization methods (in Russian). Factorial Press, Moscow (2002)

    Google Scholar 

  25. Bazaraa, M.S., Shetty, C.M.: Nonlinear programming. Theory and algorithms. Wiley, New York (1979)

    MATH  Google Scholar 

  26. Orlov, A.V.: Numerical solution of bilinear programming problems Comput. Math. Math. Phys. 48(2), 225–241 (2008)

    Article  MathSciNet  Google Scholar 

  27. Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: On computational search for optimistic solutions in bilevel problems. J. Glob. Optim. 48(1), 159–172 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: Numerical solution of a class of bilevel programming problems. Numer. Anal. Appl. 3(2), 165–173 (2010)

    Article  Google Scholar 

  29. Strekalovsky, A.S., Orlov, A.V., Malyshev, A.V.: Local search in a quadratic-linear bilevel programming problem. Numer. Anal. Appl. 3(1), 59–70 (2010)

    Article  MathSciNet  Google Scholar 

  30. Wets, R.J.-B.: On the continuity of the value of a linear program and of related polyhedral-valued multifunctions. Mathematical programming essays in honor of George B. Dantzig Part I. Math. Program. Studies 24, 14–29 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Polyak, R.A., Costa, J., Neyshabouri, S.: Dual fast projected gradient method for quadratic programming. Optim. Lett. 7, 631–645 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. MATLAB—The language of technical computing. http://www.mathworks.com/products/matlab/. Accessed 28 July 2014

Download references

Acknowledgments

This work is carried out under partial financial support of Russian Foundation for Basic Research (Project No. 13-01-92201-Mong_a). The authors are Grateful to anonymous referees for valuable remarks, which helped to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Orlov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, A.V., Strekalovsky, A.S. & Batbileg, S. On computational search for Nash equilibrium in hexamatrix games. Optim Lett 10, 369–381 (2016). https://doi.org/10.1007/s11590-014-0833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0833-8

Keywords

Navigation