Skip to main content
Log in

2-Facility manifold location routing problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The location routing problem (LRP), known to be the combination of the facility location and vehicle routing problems, is solved in the literature by either assuming planar or spherical surfaces. In this work, the manifold location routing problem (MLRP), that is an LRP on Riemannian manifold surfaces, is explained for the 2-facility (2-MLRP) case with the corresponding heuristic algorithm solution. The 2-MLRP problem is a mixed integer non-linear programming problem that is determined to be NP-hard. Special cases of MLRP include LRP on planar surfaces, when the manifold’s curvature is 0, and LRP on spherical surfaces when the curvature of the manifold is 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Altinel, K., Oncan, T.: A new enhancement of the Clarke and Wright savings heuristic for the capacitated vehicle routing problem. J. Oper. Res. Soc. 56, 954–961 (2005)

    Article  MATH  Google Scholar 

  2. Aly, A.A., Kay, D.C., Litwhiler Jr, D.W.: Location dominance on spherical surfaces. Oper. Res. 27, 972–981 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosino, D., Sciomachen, A., Grazia, M.: Scutella: a heuristic based on multi-exchange techniques for a regional fleet assignment location-routing problem. Comput. Oper. Res. 36, 442–460 (2009)

    Article  MATH  Google Scholar 

  4. Barreto, S., Ferreira, C., Paixao, J., Sousa, B.: Santos: using clustering analysis in a capacitated location-routing problem. Eur. J. Oper. Res. 179, 968–977 (2007)

    Article  MATH  Google Scholar 

  5. Cristiannini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Methods. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  6. Clarke, G., Wright, J.W.: Scheduling of vehicle from central depot to a number of delivery points. Oper. Res. 12, 568–581 (1964)

    Article  Google Scholar 

  7. Cooper, L.: Heuristic methods for location-allocation problems. Siam Rev. 6, 37–53 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daskin, M.S.: What you should know about location modeling. Naval Res. Logist. 55, 283–294 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. doCarmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall Inc, Englewood Cliffs (1976)

    Google Scholar 

  10. Drezner, Z., Wesolowsky, G.O.: Facility location on a sphere. J. Oper. Res. Soc. 29, 997–1004 (1978)

    Article  MATH  Google Scholar 

  11. Gamal, M.D.H., Salhi, S.: Constructive heuristics for the uncapacitated continuous location-allocation problem. J. Oper. Res. 52, 821–829 (2001)

    Article  MATH  Google Scholar 

  12. Huang, R., Kim, S., Menezes, M.B.C.: Facility location for large-scale emergencies. Ann. Oper. Res. 181(1), 271–286 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, M.P., Gorr, W.L., Roehrig, S.: Location of service facilities for the elderly. Ann. Oper. Res. 136(1), 329–349 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Perl, J., Daskin, M.S.: A warehouse location-routing problem. Transport. Res. B 19, 381–396 (1985)

    Article  Google Scholar 

  15. Riemann, B.: Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Inauguraldissertation, Göttingen (1851)

  16. Laporte, G.: What you should know about the vehicle routing problem. Naval Res. Logist. 54, 811–819 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Manzour-al-Ajdad, S.M.H., Torabi, S.A., Salhi, A.: A hierarchical algorithm for the planar single-facility location routing problem. Comput. Oper. Res. 39, 461–470 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marianov, V.: Location of multiple-server congestible facilities for maximizing expected demand, when services are non-essential. Ann. Oper. Res. 123(1–4), 125–141 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nagy, G., Salhi, S.: Location-routing: Issues, models, and methods. Eur. J. Oper. Res. 177, 649–672 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Salhi, S., Rand, G.K.: The effect of ignoring routes when locating depots. J. Oper. Res. 39, 150–156 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Salhi, S., Nagy, G.: Consistency and robustness in location routing. Stud. Locat. Anal. 13, 3–19 (1999)

    MathSciNet  MATH  Google Scholar 

  22. Salhi, S., Nagy, G.: Local improvement in planar facility location using vehicle routing. Ann. Oper. Res. 167, 287–296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schwardt, M., Dethloff, J.: Solving a continuous location routing problem by use of a self-organizing map. Int. J. Phys. Distrib. Logist. Manag. 35, 390–408 (2005)

    Article  Google Scholar 

  24. Schwardt, M., Fischer, K.: Combined location-routing problems—a neural network approach. Ann. Oper. Res. 167, 253–269 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sherali, H.D., Noradi, F.L.: NP-hard, capacitated, balanced p-median problems on a chain graph with a continuum of link demands. Math. Oper. Res. 13, 32–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tellier, L.-N.: The Weber problem: solution and interpretation. Geo Anal. 4(3), 215–233 (1972)

    Article  Google Scholar 

  27. Tokgöz, E., Alwazzi, S., Trafalis, T.B.: A heuristic algorithm to solve the single-facility location routing problem on Riemannian surfaces. Comput. Manag. Sci. Springer 12, 397–415 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnes est minimum. Tohoku Math. J. 43, 355–386 (1937)

    MATH  Google Scholar 

Download references

Acknowledgments

Dr. Theodore Trafalis was supported by RSF Grant 14-41-00039 and he conducted research at National Research University Higher School of Economics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Tokgöz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokgöz, E., Trafalis, T.B. 2-Facility manifold location routing problem. Optim Lett 11, 389–405 (2017). https://doi.org/10.1007/s11590-015-0984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-015-0984-2

Keywords

Navigation