Skip to main content
Log in

Error bounds for mixed integer nonlinear optimization problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We introduce a-posteriori and a-priori error bounds for optimality and feasibility of a point generated as the rounding of an optimal point of the NLP relaxation of a mixed-integer nonlinear optimization problem. Our analysis mainly bases on the construction of a tractable approximation of the so-called grid relaxation retract. Under appropriate Lipschitz assumptions on the defining functions, we thereby generalize and slightly improve results for the mixed-integer linear case from Stein (Mathematical Programming, 2015, doi:10.1007/s10107-015-0872-7). In particular, we identify cases in which the optimality and feasibility errors tend to zero at an at least linear rate for increasingly refined meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Auslender, A., Crouzeix, J.-P.: Global regularity theorems. Math. Oper. Res. 13, 243–253 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, New York (2003)

    MATH  Google Scholar 

  3. Azé, D.: A survey on error bounds for lower semicontinuous functions. In: Proceedings of 2003 MODE-SMAI Conference, EDP Sci., Les Ulis, pp. 1–17 (2003)

  4. Baum, S.P., Trotter Jr, L.E.: Integer rounding for polymatroid and branching optimization problems. SIAM J. Algebraic Discrete Methods 2, 416–425 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, É.: Sensitivity theorems in integer linear programming. Math. Progr. 34, 251–264 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Deng, S.: Computable error bounds for convex inequality systems in reflexive Banach Spaces. SIAM J. Optim 7, 274279 (1997)

    Article  MathSciNet  Google Scholar 

  7. Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A.(eds.): 50 Years of Integer Programming 1958–2008: from the early years to the State-of-the-Art. Springer (2010)

  8. Güler, O., Hoffman, A.J., Rothblum, U.G.: Approximations to solutions to systems of linear inequalities. SIAM J. Matrix Anal. Appl. 16, 688–696 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, E.: Global Optimization using Interval Analysis. Marcel Dekker, New York (1992)

    MATH  Google Scholar 

  10. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Natl. Bur. Stand. 49, 263–265 (1952)

    Article  MathSciNet  Google Scholar 

  11. Klatte D.: Eine Bemerkung zur parametrischen quadratischen Optimierung, Seminarbericht Nr. 50, Sektion Mathematik der Humboldt-Universität zu Berlin, pp. 174–185 (1983)

  12. Lewis, A.S., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.P., Martinez-Legaz, J.E., Volle, M. (eds.) Generalized convexity, generalized monotonicity: recent results, pp. 75–110. Kluwer Academic Publishers (1996)

  13. Li, G.: Global error bounds for piecewise convex polynomials. Math. Progr. 137, 37–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, G., Mordukhovich, B.S., Pham, T.S.: New fractional error bounds for polynomial systems with applications to Hölderian stability in optimization and spectral theory of tensors. Math. Progr. 153, 333–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Luo, X.D., Luo, Z.Q.: Extension of Hoffman’s error bound to polynomial systems. SIAM J. Optim. 4, 383–392 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, Z.Q., Pang, J.S.: Error bounds for analytic systems and their applications. Math. Progr. 67, 1–28 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mangasarian, O.L.: A condition number for differentiable convex inequalities. Math. Oper. Res. 10, 175–179 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mangasarian, O.L., Shiau, T.H.: Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM J. Control Optim. 25, 583–595 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neumaier, A.: Interval methods for systems of equations. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  20. Ngai, H.V., Kruger, A., Théra, M.: Stability of error bounds for semi-infinite convex constraint systems. SIAM J. Optim. 20, 2080–2096 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pang, J.-S.: Error bounds in mathematical programming. Math. Progr. 79, 299–332 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Robinson, S.M.: An application of error bounds for convex programming in a linear space. SIAM J. Control Optim. 13, 271–273 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stein, O.: Error bounds for mixed integer linear optimization problems. Math. Progr. (2015). doi:10.1007/s10107-015-0872-7

Download references

Acknowledgments

The author is grateful to the anonymous referee and the associate editor for their precise and substantial remarks on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Stein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, O. Error bounds for mixed integer nonlinear optimization problems. Optim Lett 10, 1153–1168 (2016). https://doi.org/10.1007/s11590-016-1011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1011-y

Keywords

Navigation