Skip to main content
Log in

Testing the topographical global initialization strategy in the framework of an unconstrained optimization method

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In general, classical iterative algorithms for optimization, such as Newton-type methods, perform only local search around a given starting point. Such feature is an impediment to the direct use of these methods to global optimization problems, when good starting points are not available. To overcome this problem, in this work we equipped a Newton-type method with the topographical global initialization strategy, which was employed together with a new formula for its key parameter. The used local search algorithm is a quasi-Newton method with backtracking. In this approach, users provide initial sets, instead of starting points. Then, using points sampled in such initial sets (merely boxes in \({\mathbb {R}}^{n}\)), the topographical method selects appropriate initial guesses for global optimization tasks. Computational experiments were performed using 33 test problems available in literature. Comparisons against three specialized methods (DIRECT, MCS and GLODS) have shown that the present methodology is a powerful tool for unconstrained global optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ali, M.M., Khompatraporn, C., Zabinsky, Z.B.: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems. J. Glob. Optim. 31, 635–672 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bratley, P., Fox, B.L.: Algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 14, 88–100 (1988)

    Article  MATH  Google Scholar 

  3. Custódio, A.L., Madeira, J.F.A.: GLODS: global and local optimization using direct search. J. Glob. Optim. 62, 1–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dennis Jr., J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, New Jersey (1983)

    MATH  Google Scholar 

  5. Galanti, S., Jung, A.: Low-discrepancy sequences. J. Deriv. 5, 63–83 (1997)

    Article  Google Scholar 

  6. Gentle, J.E.: Random Number Generation and Monte Carlo methods, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  7. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s methods. Siam J. Numer. Anal. 23, 707-616 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Henderson, N., de Sá Rêgo, M., Sacco, W.F., Rodrigues Jr., R.A.: A new look at the topographical global optimization method and its application to the phase stability analysis of mixtures. Chem. Eng. Sci. 127, 151–174 (2015)

    Article  Google Scholar 

  9. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search. J. Glob. Optim. 14, 331–355 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Joe, S., Kuo, F.Y.: Remark on algorithm 659: implementing Sobol’s quasirandom sequence generator. ACM Trans. Math. Softw. 29, 49–57 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kelley, C.T.: Iterative Methods for Linear and Nonlinear Equations. SIAM, Philadelphia (1995)

    Book  MATH  Google Scholar 

  12. Matsumoto, L., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 8, 3–20 (1998)

    Article  MATH  Google Scholar 

  13. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  14. Perttunen, C.D., Jones, D.R., Stuckman, B.E.: Lipschitzian optimization without the lipschitz constant. J. Optim. Theory Appl. 79, 157–181 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sobol, I.M.: The distribution of points in a cube and the approximate evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  16. Törn, A.: Topographical global optimization. Reports on Computers Science and Mathematics Ser. A, No 199, 8 p., Abo Akademi University, Sweden (1990)

  17. Törn, A., Viitanen, S.V.: Topographical global optimization. In: Floudas, C.A., Pardalos, P.M. (eds.) Recent Advances in Global Optimization, pp. 384–398. Princeton University Press, Princeton (1992)

    Google Scholar 

  18. Törn, A., Viitanen, S.: Topographical global optimization using pre-sampled points. J. Glob. Optim. 5, 267–276 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

N.H. and W.F.S. gratefully acknowledge the financial support provided by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Ministry of Science & Technology, Brazil). M.deS.R. and J.I. were supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brazil). The research by N.H. has been carried out in the framework of project PROCIENCIA-UERJ financed by FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nélio Henderson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henderson, N., de Sá Rêgo, M., Imbiriba, J. et al. Testing the topographical global initialization strategy in the framework of an unconstrained optimization method. Optim Lett 12, 727–741 (2018). https://doi.org/10.1007/s11590-017-1137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1137-6

Keywords

Navigation