Skip to main content
Log in

Integer programming models and linearizations for the traveling car renter problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The traveling car renter problem (CaRS) is an extension of the classical traveling salesman problem (TSP) where different cars are available for use during the salesman’s tour. In this study we present three integer programming formulations for CaRS, of which two have quadratic objective functions and the other has quadratic constraints. The first model with a quadratic objective function is grounded on the TSP interpreted as a special case of the quadratic assignment problem in which the assignment variables refer to visitation orders. The second model with a quadratic objective function is based on the Gavish and Grave’s formulation for the TSP. The model with quadratic constraints is based on the Dantzig–Fulkerson–Johnson’s formulation for the TSP. The formulations are linearized and implemented in two solvers. An experiment with 50 instances is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czerny, A.I., Shi, Z., Zhang, A.: Can market power be controlled by regulation of core prices alone? An empirical analysis of airport demand and car rental price. Transp. Res. Part A 91, 260–272 (2016)

    Google Scholar 

  2. Dantzig, G.B., Fulkerson, D.R., Johnson, S.M.: Solution of a large-scale traveling salesman problem. Oper. Res. 2(4), 393–410 (1954)

    MathSciNet  Google Scholar 

  3. Felipe, D., Goldbarg, E.F.G., Goldbarg, M.C.: Scientific algorithms for the car renter salesman problem. In: Proceedings of the IEEE CEC 2014 Congress on Evolutionary Computation, vol. 1, pp. 873–879 (2014)

  4. Fontem, B.: An optimal stopping policy for car rental businesses with purchasing customers. Ann. Oper. Res. (2016). doi:10.1007/s10479-016-2240-2

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to eht Theory of NP-completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  6. Gavish, B., Graves, S.C.: The Travelling Salesman Problem and Related Problems, Working paper GR-078-78, Operations Research Center, Massachusetts Institute of Technology (1978)

  7. Glover, F., Woolsey, E.: Converting the 0–1 polynomial programming problem to a 0–1 linear program. Oper. Res. 22, 180–182 (1974)

    Article  MATH  Google Scholar 

  8. Goldbarg, M.C., Asconavieta, P.H., Goldbarg, E.F.G.: Memetic algorithm for the traveling car renter problem: an experimental investigation. Memet. Comput. 4(2), 89–108 (2012)

    Article  Google Scholar 

  9. Goldbarg, M.C., Goldbarg, E.F.G., Asconavieta, P.H., Menezes, M.da S., Luna, H.P.L.: A transgenetic algorithm applied to the traveling car renter problem. Expert Syst. Appl. 40, 6298–6310 (2013)

    Article  Google Scholar 

  10. Goldbarg, M.C., Goldbarg, E.F.G., Menezes, M.S., Luna, H.P.L.: Quota traveling car renter problem: model and evolutionary algorithms. Inf. Sci. 367–368, 232–245 (2016)

    Article  Google Scholar 

  11. Guerriero, F., Olivito, F.: Revenue models and policies for the car rental industry. J. Math. Model. Algorithms 13, 247–282 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koopmans, T.C., Beckmann, M.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lazov, I.: Profit management of car rental companies. Eur. J. Oper. Res. (2016). doi:10.1016/j.ejor.2016.08.064

  14. Li, D., Pang, P.: Dynamic booking control for car rental revenue management: a decomposition approach. Eur. J. Oper. Res. 256, 850–867 (2017)

    Article  MathSciNet  Google Scholar 

  15. Miller, C.E., Tucker, A.W., Zemlin, R.A.: Integer programming formulation of traveling salesman problems. J. ACM (JACM) 4, 326–329 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oliveira, B.B., Caravilla, M.A., Oliveira, J.F.: A relax-and-fix-based algorithm for the vehicle-reservation assignment problem in a car rental company. Eur. J. Oper. Res. 237, 729–737 (2014)

    Article  Google Scholar 

  17. Oliveira, B.B., Caravilla, M.A., Oliveira, J.F.: Fleet and revenue management in a car rental companies: a literature review and an integrated conceptual framework. Omega (2016). doi:10.1016/j.omega.2016.08.011

  18. Öncan, T., Altinel, I.K., Laporte, G.: A comparative analysis of several asymetric traveling salesman problem formulations. Comput. Oper. Res. 36, 637–654 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 4, 376–384 (1991)

    Article  MATH  Google Scholar 

  20. Robert, F.: Applications de lálgebre de Boole en recherche opérationelle. Revue Française de Recherche Opérationelle 14, 17–26 (1960)

    Google Scholar 

  21. Silva, A.R.V., Ochi, L.S.: An efficient hybrid algorithm for the traveling car renter problem. Expert Syst. Appl. 64, 132–140 (2016)

    Article  Google Scholar 

  22. The Global Car Rental Industry 2016–2021: Trends, Forecast and Opportunity Analysis 2016, February 2016, Lucintel

Download references

Acknowledgements

The researches of M. C. Goldbarg and E. F. G. Goldbarg are partially supported by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), Brazil, under Grants 301845/2013-1 and 308062/2014-0. The research of L. Corrales is partially supported by CONICET (Consejo Nacional de Investigaciones Científicas Y Técnicas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth F. G. Goldbarg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldbarg, M.C., Goldbarg, E.F.G., Luna, H.P.L. et al. Integer programming models and linearizations for the traveling car renter problem. Optim Lett 12, 743–761 (2018). https://doi.org/10.1007/s11590-017-1138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1138-5

Keywords

Navigation