Skip to main content
Log in

Note on the modified relaxation CQ algorithm for the split feasibility problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper we are concerned with the Split Feasibility Problem (SFP) in which there are given two Hilbert spaces \(H_1\) and \(H_2\), nonempty, closed and convex sets \(C\subseteq H_1\) and \(Q\subseteq H_2\), and a bounded and linear operator \(A:H_1 \rightarrow H_2\). The SFP is then to find a point \(x^*\in C\) such that its image under A belongs to Q, meaning that \(Ax^*\in Q\). This reformulation was employed successfully for solving many inverse problems: for example, in intensity-modulated radiation therapy treatment planning. One of the typical classes of methods that have been used to solve the SFP is the class of projection method. This note focuses on the modified relaxation CQ algorithm with the Armijo-line search rule for solving the SFP. Under common and standard assumptions, we show that the proposed method weakly converges to a solution of the SFP. Numerical examples illustrating our method’s efficiency are presented for solving the LASSO problem in which the goal is to recover a sparse signal from a limited number of observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity-modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)

    Article  Google Scholar 

  3. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldstein, A.A.: Convex programming in Hilbert space. Bull. Am. Math. Soc. 70, 709–710 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fukushima, M.: A relaxed projection method for variational inequalities. Math. Program. 35, 58–70 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, Q.: The relaxed CQ algorithm solving the split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655–1665 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Z.W., Yang, Q.Z., Yang, Y.N.: The relaxed inexact projection methods for the split feasibility problem. Appl. Math. Comput. 217, 5347–5359 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Lopez, G., Martin-Marquez, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, Q.L., Yao, Y.H., He, S.N.: Weak convergence theorems of the modified relaxed projection algorithms for the split feasibility problem in Hilbert spaces. Optim. Lett. 8, 1031–1046 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tang, Y.C., Zhu, C.X., Yu, H.: Iterative methods for solving the multiple-sets split feasibility problem with splitting self-adaptive step size. Fixed Point Theory Appl. 1–15, 2015 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Wang, X.F., Yang, X.M.: On the existence of minimizers of proximity functions for split feasibility problems. J. Optim. Theory Appl. 166(3), 861–888 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vinh, N.T., Hoai, P.T.: Some subgradient extragradient type algorithms for solving split feasibility and fixed point problems. Math. Methods Appl. Sci. 39(13), 3808–3823 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Motonone Operator Theory in Hilbert Spaces. Springer, London (2011)

    Book  MATH  Google Scholar 

  19. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for Fejer-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14, 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  22. Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. van den Berg, E., Friedlander, M. P.: SPGL1: A Solver for Large-scale Sparse Reconstruction. http://www.cs.ubc.ca/labs/scl/spgl1 (2007)

  24. Goldstein, T., Studer, C., Baraniuk, R.: A Field Guide to Forward-backward Splitting with a FASTA Implementation. arXiv:1411.3406 (2014)

  25. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  26. Censor, Y., Len, A.: An iterative row action method for interval convex programming. J. Optim. Theory Appl. 34, 321–353 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by a Visiting Scholarship of Academy of Mathematics and Systems Science, the Chinese Academy of Sciences (AM201622C04), the National Natural Science Foundations of China (11401293,11661056), the Natural Science Foundations of Jiangxi Province (20151BAB211010, 20142BAB211016), the China Postdoctoral Science Foundation (2015M571989) and the Jiangxi Province Postdoctoral Science Foundation (2015KY51). The first author’s work is supported by the EU FP7 IRSES Program STREVCOMS, Grant No. PIRSES-GA-2013-612669.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Chao Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibali, A., Liu, LW. & Tang, YC. Note on the modified relaxation CQ algorithm for the split feasibility problem. Optim Lett 12, 817–830 (2018). https://doi.org/10.1007/s11590-017-1148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1148-3

Keywords

Navigation