Skip to main content
Log in

DC decomposition based branch-and-bound algorithms for box-constrained quadratic programs

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

The difference-of-convex (DC) decomposition is an effective method for designing a branch-and-bound algorithm. In this paper, we design two new branch-and-bound algorithms based on DC decomposition, to find global solutions of nonconvex box-constrained quadratic programming problems, and compare the efficiency of the proposed algorithms with two previous state-of-the-art branch-and-bound algorithms. Numerical experiments are conducted to show the competitiveness of the proposed algorithms on 20–60 dimensional box-constrained quadratic programming problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The idea of using an iterative procedure is motivated by the works in [5, 15].

  2. Available at https://github.com/sburer/QUADPROGBB.

  3. Available at http://sburer.github.io/files/Box-QP.tar.gz.

  4. The BARON solver is called via the interface provided on the NEOS Server [10]. However, we believe that the significant difference of the performances between CP-BB and BARON is mainly due to algorithmic design, rather than the hardware of the machines.

References

  1. An, L.T.H., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Global Optim. 11, 253–285 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. An, L.T.H., Tao, P.D.: A branch and bound method via d.c. optimization algorithms and ellipsoidal technique for box constrained nonconvex quadratic problems. J. Global Optim. 13, 171–206 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Global Optim. 43, 471–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Billionnet, A., Elloumi, S.: Using a mixed integer quadratic programming solver for the unconstrained quadratic 0–1 Problem. Math. Program. 109, 55–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buchheim, C., Wiegele, A.: Semidefinite relaxations for non-convex quadratic mixed-integer programming. Math. Program. 141, 435–452 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs. Math. Program. Comput. 2, 1–19 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113, 259–282 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cambini, R., Sodini, C.: Decomposition methods for solving nonconvex quadratic programs via branch and bound. J. Global Optim. 33, 316–336 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Burer, S.: Globally solving nonconvex quadratic programming problems via completely positive programming. Math. Program. Comp. 4, 33–52 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Czyzyk, J., Mesnier, M.P., Moré, J.J.: The NEOS server. IEEE J. Comput. Sci. Eng. 5, 68–75 (1998)

    Article  Google Scholar 

  11. Dong, H.: Relaxation nonconvex quadratic functions by multiple adaptive diagonal perturbations. SIAM J. Optim. 26, 1962–1985 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Linderoth, J.: A simplicial branch-and-bound algorithm for solving quadratically constrained quadratic programs. Math. Program. 103, 251–282 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, C., Guo, X.: Convex reformulation for binary quadratic programming problems via average objective value maximization. Optim. Lett. 9, 523–535 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is NP-Hard. J. Global Optim. 1, 15–22 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qualizza, A., Belotti, P., Margot, F.: Linear programming relaxations of quadratically constrained quadratic programs. In: IMA Volume Series, pp. 407–426. Springer, Berlin (2012)

  16. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: projected formulations. Math. Program. 130, 359–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sturm, J.F.: Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Method Softw. 11, 625–653 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming problems using a reformulation-linearization technique. J. Global Optim. 2, 101–112 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  20. Skjäl, A., Westerlund, T., Misener, R., Floudas, C.A.: A generalization of the classical \(\alpha \)-BB convex underestimation via diagonal and nondiagonal quadratic terms. J. Optim. Theory Appl. 154, 462–490 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. (Ser. B) 103, 225–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102, 559–575 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zheng, X., Sun, X., Li, D.: Nonconvex quadratically constrained quadratic programming: best D.C. decompositions and their SDP representations. J. Global Optim. 50, 695–712 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Deng.

Additional information

Lu’s research has been supported by National Natural Science Foundation of China Grant No. 11701177, Fundamental Research Funds for the Central Universities Grant No. 2017MS058. Deng’s research has been supported by National Natural Science Foundation of China Grant No. 11501543, and Research Foundation of UCAS Grants Nos. Y65201VY00 and Y65302V1G4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, C., Deng, Z. DC decomposition based branch-and-bound algorithms for box-constrained quadratic programs. Optim Lett 12, 985–996 (2018). https://doi.org/10.1007/s11590-017-1203-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1203-0

Keywords

Navigation