Skip to main content
Log in

Apriori estimates for fractional diffusion equation

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We derive \(L^2([0,T);H_{loc}^{\alpha /2}(\mathbb {R}^d))\), \(\alpha \in [1,2)\), apriori estimate for solutions to the fractional or anomalous diffusion equation using a generalization of the Leibnitz rule for the fractional Laplacean. The equation models a wide range of physical phenomena and, in particular, it is a linearized variant of the fractional porous media equation. The apriori estimates can be further used to rate convergence of corresponding numerical schemes, in the control and optimization theory and for various non-linear fractional PDEs. We use them here to prove existence of solution to a Cauchy problem for the fractional porous media equationas well as a result concerning optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Logvinova, K., Nel, M.-C.: A fractional equation for anomalous diffusion in a randomly heterogeneous porous medium. Chaos 14, 982 (2004)

    Article  MathSciNet  Google Scholar 

  2. Santoro, P.A., de Paula, J.L., Lenzi, E.K., Evangelista, L.R.: Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell. J. Chem. Phys. 135, 114704 (2011)

    Article  Google Scholar 

  3. de Pablo, A., Quirs, F., Juan, A.R., Vazquez, L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)

    Article  MathSciNet  Google Scholar 

  4. del Teso, F.: Finite difference method for a fractional porous medium equation. Calcolo 51, 615–638 (2014)

    Article  MathSciNet  Google Scholar 

  5. Imbert, C.: Finite speed of propagation for a non-local porous medium equation. Colloq. Math. 143, 149–157 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Stan, D., del Teso, F., Va zquez, J.L.: Finite and infinite speed of propagation for porous medium equations with nonlocal pressure. J. Differ. Equ. 260(2), 1154–1199 (2016)

    Article  MathSciNet  Google Scholar 

  7. Weiss, M., Elsner, M., Kartberg, F., Nilsson, T.: Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. Biophys. J. 87(5), 3518–3524 (2004)

    Article  Google Scholar 

  8. Li, Hl, Zhang, L., Hu, C., Jiang, Y.L., Teng, Z.: Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge. J. Appl. Math. Comput. 54, 435–449 (2017)

    Article  MathSciNet  Google Scholar 

  9. Mophou, G.: Optimal control of fractional diffusion equation. Comput. Math. Appl. 61, 68–78 (2011)

    Article  MathSciNet  Google Scholar 

  10. Rihan, F.A.: Numerical modeling of fractional-order biological systems. Abstr. Appl. Anal. 2013, Article ID 816803, 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  11. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives. Academic Press, San Diego–New York (1999)

    MATH  Google Scholar 

  12. Evangelista, L.R., Lenzi, E.K.: Fractional Diffusion Equations and Anomalous Diffusion. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  13. Bonforte, M., Vzquez, J.L.: A priori estimates for fractional nonlinear degenerate diffusion equations on bounded domains. Arch. Ration. Mech. Anal. 218, 317–362 (2015)

    Article  MathSciNet  Google Scholar 

  14. Osler, T.J.: Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 18, 658–674 (1970)

    Article  MathSciNet  Google Scholar 

  15. Mitrovic, D.: On a Leibnitz type formula for fractional derivatives. Filomat 27, 1141–1146 (2013)

    Article  MathSciNet  Google Scholar 

  16. Alsaedi, A., Ahmad, B., Kirane, M.: A survey of useful inequalities in fractional calculus. J. Pseudo Differ. Calc. Appl. 20, 574–594 (2017)

    MathSciNet  MATH  Google Scholar 

  17. Grillo, G., Muratori, M., Punzo, F.: Fractional porous media equations: existence and uniqueness of weak solutions with measure data. Calc. Var. Partial Differ. Equ. 54, 3303–3335 (2015)

    Article  MathSciNet  Google Scholar 

  18. Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection-diffusion equations. Annales de l’Institut Henri Poincare Analyse Non linéare 28, 413–441 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was partially supported by project P30233 of the Austrian Science Fund FWF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mitrovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burazin, K., Mitrovic, D. Apriori estimates for fractional diffusion equation. Optim Lett 13, 1793–1801 (2019). https://doi.org/10.1007/s11590-018-1332-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1332-0

Keywords

Navigation