Skip to main content
Log in

A primal-dual interior-point algorithm with arc-search for semidefinite programming

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We propose a wide neighborhood primal-dual interior-point algorithm with arc-search for semidefinite programming. In every iteration, the algorithm constructs an ellipse and searches an \(\varepsilon \)-approximate solution of the problem along the ellipsoidal approximation of the central path. Assuming a strictly feasible starting point is available, we show that the algorithm has the iteration complexity bound \(O\left( n^{\frac{3}{4}}\log \frac{{X^{0}}\bullet {S}^{0}}{\varepsilon }\right) \) for the Nesterov–Todd direction, which is similar to that of the corresponding algorithm for linear programming. The numerical results show that our algorithm is efficient and promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F.: Combinatorial optimization with interior-point methods and semi-definite matrices. Ph.D. thesis, Computer Science Department, University of Minnesota, Minneapolis, MN (1991)

  2. Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  3. Overton, M.: Large-scale optimization of eigenvalues. SIAM J. Optim. 2, 88–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kojima, M., Shindoh, S., Hara, S.: Interior-point methods for the monotone semidefinite linear complementarity problem in symmetric matrices. SIAM J. Optim. 7, 86–125 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Nesterov, Y., Todd, M.: Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim. 8, 256–268 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Vandenberghe, L., Boyd, S.: A primal-dual potential reduction method for problems involving matrix inequalities. Math. Program. 69, 205–236 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Hung, P., Ye, Y.: An asymptotocal \(O(\sqrt{n}L)\)-iteration path-following linear programming algorithm that use wide neighborhoods. SIAM J. Optim. 6, 570–586 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jansen, B., Roos, C., Terlaky, T.: Improved complexity using higher-order correctors for primal-dual Dikin affine scaling. Math. Program. 76, 117–130 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Yang, Y.: Arc-search path-following interior-point algorithms for linear programming. Optimization Oline (2009). http://www.optimization-online.org/ARCHIVE_CAT/LINSDP/2009.html

  10. Yang, Y.: A polynomial arc-search interior-point algorithms for linear programming. J. Optim. Theory. Appl. 158, 859–873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, Y.: CurveLP-A MATLAB implementation of an infeasible interior-point algorithm for linear programming. Numer. Algorithms 74, 967–996 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, Y.: A polynomial arc-search interior-point algorithms for convex quadratic programming. Eur. J. Oper. Res. 215, 25–38 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Monteiro, R., Adler, I.: A polynominal-time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extension. Math. Oper. Res. 15, 191–214 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, X.M., Zhang, Y.K., Liu, H.M.: A wide neighborhood infeasible-interior-point method with arc-search for linear programming. J. Comput. Math. Appl. 51, 209–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, X.M., Liu, H.W., Zhang, Y.K.: An arc-search infeasible-interior-point method for symmetric optimization in a wide neighborhood of the central path. Optim. Lett. 11, 135–152 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, Y.G., Yamashita, M.: An arc-search \(O(nL)\) infeasible-interior-point algorithm for linear programming. Optim. Lett. 12, 781–798 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pirhaji, M., Zangiabadi, M., Mansouri, H.: An \(l_2\)-neighborhood infeasible interior-point algorithm for linear complementarity problems. 4OR-Q. J. Oper. Res. 15, 111–131 (2017)

    Article  MATH  Google Scholar 

  18. Kheirfam, B.: An arc-search interior point method in the \(N_{\infty }^{-}(\gamma )\) neighborhood for symmetric optimization. Fund. Inform. 146, 255–269 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kheirfam, B.: An arc-search infeasible interior-point algorithm for horizontal linear complementarity problem in the \(N_{\infty }^{-}(\gamma )\) neighbourhood of the central path: Int. J. Comput. Math. 94, 2271–2282 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Kheirfam, B., Moslemi, M.: On the extend of an arc-search interior-point algorithm for semidefinite optimization. Numer. Algebra Control Optim. 2, 261–275 (2018)

    Article  MATH  Google Scholar 

  21. Yang, Y.: Two computationally efficient polynomial iteration infeasible interior-point algorithm for linear programming. Numer. Algorithm Optim. Lett. 12, 781–798 (2018)

    Article  Google Scholar 

  22. de Klerk, E.: Aspects of Semidefinite Programming: Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht (2002)

    Book  MATH  Google Scholar 

  23. Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  24. Monterio, R.D.C., Yin, Z.: A unified analysis for a class of long-step primal-dual path-following interior-point algorithms for semidefinite programming. Math. Program. 81, 281–299 (1998)

    MathSciNet  MATH  Google Scholar 

  25. Zhang, Y.: On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim. 8, 365–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nesterov, Y., Todd, M.: Self-scaled barriers and interior-point methods for convex programming. Math. Oper. Res. 22, 1–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, X.M., Liu, H.W.: Study on wide neighborhood in interior-point method for symmetric cone programming. Xidian University Dissertation, P. R. China (2014)

  28. Koulaei, M.H., Terlaky, T.: On the extension of a Mehrotra-type algorithm for semidefinit optimization. Technical Report 2007/4, Advanced optimization Lab., Department of Computingand Software, McMaster University, Hamilton, Ontario, Canada

Download references

Acknowledgements

Supported by the National Natural Science Foundation of China (Grant No. 71471102) and Excellent Foundation of Graduate Student of China Three Gorges University (2017YPY082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beibei Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The following results introduced in [24, 28] are used during the analysis.

Lemma A.1

([28]) Let \(\lambda _{1}\) be the smallest eigenvalue of the matrix \({\hat{X}}{\hat{S}}\). Then for any \(P\in {\mathcal {P}}(X,S)\), one has

$$\begin{aligned} \rho (({\hat{E}}{\hat{F}})^{-1})=\frac{1}{4\lambda _{1}}. \end{aligned}$$

Lemma A.2

([24]) For any \(u,v\in {\mathbb {R}}^{n}\) and \(G\in {\mathcal {S}}^{n}_{++},\) we have

$$\begin{aligned} ||u||~||v||\le \sqrt{\textit{cond}(G)}||G^{-\frac{1}{2}}u||~||G^{\frac{1}{2}}v||\le \frac{\sqrt{\textit{cond}(G)}}{2}(||G^{-\frac{1}{2}}u||^{2}+||G^{\frac{1}{2}}v||^{2}). \end{aligned}$$

Lemma A.3

([24]) Let \(P\in {\mathcal {P}}(X,S)\) be given. Then

$$\begin{aligned} ||({\hat{F}}{\hat{E}})^{-\frac{1}{2}}\mathrm {vec}(\sigma \mu {I}-H({\hat{X}}{\hat{S}}))||^{2}\le \left( 1-2\sigma +\frac{\sigma ^{2}}{\gamma }\right) n\mu . \end{aligned}$$

Lemma A.4

([24]) Suppose that \((X,y,S)\in {\mathcal {S}}^{n}_{++}\times {\mathbb {R}}^{m}\times {\mathcal {S}}^{n}_{++}\), \(P\in {\mathcal {S}}^{n}_{++}\), and \(Q\in {\mathcal {P}}(X,S)\). Then

$$\begin{aligned} \lambda _{\min }[H_{P}(XS)]\le \lambda _{\min }[XS]=\lambda _{\min }[H_{Q}(XS)]. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Yuan, B., Zhou, Y. et al. A primal-dual interior-point algorithm with arc-search for semidefinite programming. Optim Lett 13, 1157–1175 (2019). https://doi.org/10.1007/s11590-019-01414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01414-z

Keywords

Navigation