Skip to main content
Log in

Fuzzy clusterwise quasi-likelihood generalized linear models

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

The quasi-likelihood method has emerged as a useful approach to the parameter estimation of generalized linear models (GLM) in circumstances where there is insufficient distributional information to construct a likelihood function. Despite its flexibility, the quasi-likelihood approach to GLM is currently designed for an aggregate-sample analysis based on the assumption that the entire sample of observations is taken from a single homogenous population. Thus, this approach may not be suitable when heterogeneous subgroups exist in the population, which involve qualitatively distinct effects of covariates on the response variable. In this paper, the quasi-likelihood GLM approach is generalized to a fuzzy clustering framework which explicitly accounts for such cluster-level heterogeneity. A simple iterative estimation algorithm is presented to optimize the regularized fuzzy clustering criterion of the proposed method. The performance of the proposed method in recovering parameters is investigated based on a Monte Carlo analysis involving synthetic data. Finally, the empirical usefulness of the proposed method is illustrated through an application to actual data on the coupon usage behaviour of a sample of consumers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arabie P, Hubert L (1994) Cluster analysis in marketing research. In: Bagozzi RP (ed) Advanced methods of marketing research. Blackwell, Oxford, pp 160–189

    Google Scholar 

  • Bagozzi RP (1982) A field investigation of causal relations among cognition, affect, intensions, and behavior. J Mark Res 19: 562–584

    Article  Google Scholar 

  • Bawa K, Shoemaker RW (1989) Analyzing incremental sales from a direct mail coupon promotion. J Mark 53: 66–78

    Article  Google Scholar 

  • Bezdek JC (1974a) Numerical taxonomy with fuzzy sets. J Math Biol 1: 57–71

    Article  MATH  MathSciNet  Google Scholar 

  • Bezdek JC (1974b) Cluster validity with fuzzy set. J Cybern 3: 58–72

    Article  MathSciNet  Google Scholar 

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    MATH  Google Scholar 

  • Bezdek JC, Coray C, Gunderson R, Watson J (1981) Detection and characteristics of cluster substructure. II. Fuzzy c-varieties and convex combinations thereof. SIAM J Appl Math 40: 358–372

    Article  MATH  MathSciNet  Google Scholar 

  • Blattberg RC, Buesing T, Peacock P, Sen SK (1978) Identifying the deal prone segment. J Mark Res 15: 369–377

    Article  Google Scholar 

  • Böckenholt U, Takane Y (1994) Linear constraints in correspondence analysis. In: Greenacre MJ, Blasius J (eds) Correspondence analysis in social sciences. Academic Press, London, pp 112–127

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM- algorithm. J R Stat Soc B 39: 1–38

    MATH  MathSciNet  Google Scholar 

  • DeSarbo WS, Cron WL (1988) A conditional mixture maximum likelihood methodology for clusterwise linear regression. J Classif 5: 249–289

    Article  MATH  MathSciNet  Google Scholar 

  • Döring C, Lesot M-J, Kruse R (2006) Data analysis with fuzzy clustering methods. Comput Stat Data Anal 51: 192–214

    Article  MATH  Google Scholar 

  • Dunn JC (1974) A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern 3: 32–57

    Article  MathSciNet  Google Scholar 

  • Efron B (1982) The Jackknife, the bootstrap and other resampling plans. SIAM, Philadelphia

    Google Scholar 

  • Gordon AD (1999) Classification. Chapman & Hall/CRC, London

    MATH  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning: data mining, inference, and prediction. Springer, New York

    MATH  Google Scholar 

  • Hathaway RJ, Bezdek JC (1993) Switching regression models and fuzzy clustering. IEEE Trans Fuzzy Syst 1: 195–204

    Article  Google Scholar 

  • Heyde CC (1997) Quasi-likelihood and its applications. A general approach to optimal parameter estimation. Springer-Verlag, New York

    Google Scholar 

  • Hong S, Mitchell S, Harshman RA (2006) Bootstrap scree tests: a Monte Carlo simulation and applications to published data. Br J Math Stat Psychol 59: 35–57

    Article  MathSciNet  Google Scholar 

  • Hope ACA (1968) A simplified Monte Carlo significance test procedure. J R Stat Soc B 30: 582–598

    MATH  Google Scholar 

  • Höppner F, Klawonn F, Kruse R, Runkler T (1999) Fuzzy cluster analysis. Wiley, Chichester

    MATH  Google Scholar 

  • Hruschka H (1986) Market definition and segmentation using fuzzy clustering methods. Int J Res Mark 3: 117–134

    Article  Google Scholar 

  • Jedidi K, Jagpal HS, DeSarbo WS (1997) Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Mark Sci 16: 39–59

    Article  Google Scholar 

  • Kamakura WA, Kim B, Lee J (1996) Modeling preference and structural heterogeneity in consumer choice. Mark Sci 15: 152–172

    Article  Google Scholar 

  • Kotler P (1999) Marketing management: millennium edition, 10th edn. Prentice Hall, New Delhi

    Google Scholar 

  • Li R-P, Mukaidono M (1995) A maximum entropy approach to fuzzy clustering. In: Proceedings of the 4th IEEE international conference on fuzzy systems, pp 2227–2232

  • Liang KY, Zeger SL (1986) Longitudinal data analysis using generalized linear models. Biometrika 73: 13–22

    Article  MATH  MathSciNet  Google Scholar 

  • Lin P-S, Clayton MK (2005) Analysis of binary spatial data by quasi-likelihood estimating equations. Ann Stat 33: 542–555

    Article  MATH  MathSciNet  Google Scholar 

  • McBratney AB, Moore AW (1985) Application of fuzzy sets to climatic classification. Agric For Meteorol 35: 165–185

    Article  Google Scholar 

  • McCullagh P (1983) Quasi-likelihood functions. Ann Stat 11: 59–67

    Article  MATH  MathSciNet  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman & Hall, London

    MATH  Google Scholar 

  • McLachlan G, Peel D (2000) Finite mixture models. Wiley, New York

    Book  MATH  Google Scholar 

  • Miyamoto S (1998) An overview and new methods in fuzzy clustering. In: Proceedings of the second conference on knowledge-based intelligent electronic systems, pp 33–40

  • Miyamoto S, Mukaidono M (1997) Fuzzy c-means as a regularization and maximum entropy approach. In: Proceedings of the 7th international fuzzy systems Association World Congress, vol 2, pp 86–92

  • Moffitt TE (1993) Adolescent-limited and life-course-persistent antisocial behavior: a developmental taxonomy. Psychol Rev 100: 674–701

    Article  Google Scholar 

  • Mulaik SA (1972) The foundations of factor analysis. McGraw-Hill, New York

    Google Scholar 

  • Muthén BO (1989) Latent variable modeling in heterogeneous populations. Psychometrika 54: 557–585

    Article  MathSciNet  Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc A 135: 370–384

    Article  Google Scholar 

  • Okeke F, Karnieli A (2006) Linear mixture model approach for selecting fuzzy exponent value in fuzzy c-means algorithm. Ecol Inf 1: 117–124

    Article  Google Scholar 

  • Roubens M (1982) Fuzzy clustering algorithms and their cluster validity. Eur J Oper Res 10: 294–301

    Article  MATH  MathSciNet  Google Scholar 

  • Takane Y, Yanai H, Mayekawa S (1991) Relationships among several methods of linearly constrained correspondence analysis. Psychometrika 56: 667–684

    Article  MATH  MathSciNet  Google Scholar 

  • Tucker LR (1951) A method for synthesis of factor analysis studies. Personnel research section report no. 984. U.S. Department of the Army, Washington DC

  • Wedderburn RWM (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61: 439–447

    MATH  MathSciNet  Google Scholar 

  • Wedel M (2000) User’s manual for GLIMMIX 2.0. iec ProGAMMA, Groningen

    Google Scholar 

  • Wedel M, DeSarbo WS (1995) A mixture likelihood approach for generalized linear models. J Classif 12: 21–55

    Article  MATH  Google Scholar 

  • Wedel M, Kamakura WA (1998) Market segmentation: conceptual and methodological foundations. Kluwer, Boston

    Google Scholar 

  • Wedel M, Steenkamp J-BEM (1989) Fuzzy clusterwise regression approach to benefit segmentation. Int J Res Mark 6: 241–258

    Article  Google Scholar 

  • Zeger SL (1988) A regression model for time series of counts. Biometrika 75: 621–629

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heungsun Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, H., Tomiuk, M.A. Fuzzy clusterwise quasi-likelihood generalized linear models. Adv Data Anal Classif 4, 255–270 (2010). https://doi.org/10.1007/s11634-010-0069-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-010-0069-0

Keywords

Mathematics Subject Classification (2000)

Navigation