Skip to main content
Log in

Controlled teleportation

  • Review Article
  • Published:
Frontiers of Computer Science in China Aims and scope Submit manuscript

Abstract

In this article, we review the recent development of controlled teleportation which can be used for sharing quantum information and has important applications in remote quantum computation. We introduce the principles of a couple of controlled teleportation schemes with maximally entangled quantum channels and those with pure entangled quantum channels (non-maximally entangled states). The schemes based on maximally entangled states have the advantage of having maximal efficiency although there are differences in their implementations in experiment. In the controlled teleportation schemes using non-maximally entangled states as the quantum channels, the receiver can reconstruct the originally unknown state by adding an auxiliary particle and performing a unitary evolution. No matter what the unknown state is (a single qubit state or an m-qudit state), the auxiliary particle required is only a two-level quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Bennett C H, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 1993, 70: 1895–1899

    Article  MathSciNet  MATH  Google Scholar 

  2. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete. Physical Review, 1935, 47: 777–780

    Article  MATH  Google Scholar 

  3. Karlsson A, Bourennane M. Quantum teleportation using three-particle entanglement. Physical Review A, 1998, 58: 4394–4400

    Article  MathSciNet  Google Scholar 

  4. Lance A M, Symul T, Bowen W P, et al. Tripartite quantum state sharing. Physical Review Letters, 2004, 92: 177903

    Google Scholar 

  5. Deng F G, Li X H, Li C Y, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Physical Review A, 2005, 72: 044301

    Google Scholar 

  6. Gordon G, Rigolin G. Generalized quantum-state sharing. Physical Review A, 2006, 73: 062316

    Google Scholar 

  7. Deng F G, Li X H, Li C Y, et al. Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. European Physical Journal D, 2006, 39: 459–464

    Article  Google Scholar 

  8. Wang Z Y, Yuan H, Shi S H, et al. Threeparty qutrit-state sharing. European Physical Journal D, 2007, 41: 371–375

    Article  MathSciNet  Google Scholar 

  9. Man Z X, Xia Y J, An N B. Quantum state sharing of an arbitrary multiqubit state using nonmaximally entangled GHZ states. European Physical Journal D, 2007, 42: 333–340

    Article  MathSciNet  Google Scholar 

  10. Yang C P, Chu S I, Han S. Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Physical Review A, 2004, 70: 022329

    Google Scholar 

  11. Deng F G, Li C Y, Li Y S, et al. Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Physical Review A, 2004, 72: 022338

    Google Scholar 

  12. Li X H, Zhou P, Li C Y, et al. Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. Journal Of Physics B, 2006, 39: 1975–1983

    Article  Google Scholar 

  13. Li X H, Deng F G, Zhou H Y. Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger-Horne-Zeilinger states. Chinese Physics Letters, 2007, 24: 1151–1153

    Article  Google Scholar 

  14. Man Z X, Xia Y J, et al. Genuine multiqubit entanglement and controlled teleportation. Physical Review A, 2007, 75: 052306

    Google Scholar 

  15. Zhang Z J. Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Physics Letters A, 2006, 352: 55–58

    Article  Google Scholar 

  16. Zhang Z J, Liu Y, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information via quantum entanglement swapping. Communications In Theoretical Physics, 2005, 44:847–850

    Article  Google Scholar 

  17. Zhang Z J, Man Z X. Many-agent controlled teleportation of multi-qubit quantum information. Physics Letters A, 2005, 341: 55–59

    Article  MATH  Google Scholar 

  18. Yan F L, Wang D. Probabilistic and controlled teleportation of unknown quantum states. Physics Letters A, 2003, 316: 297–303

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou P, Li X H, Deng F G, et al. Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel. Joural Of Physics A, 2007, 40: 13121–13130

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang Y H, Song H S. Preparation of partially entangled state and deterministic multi-controlled teleportation. Optics Communications, 2008, 281: 489–493

    Google Scholar 

  21. Cao Z L, Zhou J, Yang M. Probabilistic and controlled teleportation of unknown ionic states via linear optical elements. International Journal of Quantum Information, 2007, 5: 431–435

    Article  MATH  Google Scholar 

  22. Gao T. Quantum logic networks for probabilistic and controlled teleportation of unknown quantum states. Communications in Theoretical Physics, 2004, 42: 223–228

    MATH  Google Scholar 

  23. Pati A K, Agrawal P. Probabilistic teleportation of a qudit. Physics Letters A, 2007, 371: 185–189

    Article  MathSciNet  Google Scholar 

  24. Li C Y, Li X H, Deng F G, et al. Efficient quantum cryptography network without entanglement and quantum memory. Chinese Physics Letters, 2006, 23: 2896–2899

    Article  MathSciNet  Google Scholar 

  25. Li X H, Deng F G, Li C Y, et al. Deterministic secure quantum communication without maximally entangled states. Journal of the Korean Physical Society, 2006, 49: 1354–1359

    MathSciNet  Google Scholar 

  26. Wang C, Deng F G, Li Y S, et al. Quantum secure direct communication with high-dimension quantum superdense coding. Physical Review A, 2005, 71: 044305

    Google Scholar 

  27. Liu X S, Long G L, Tong D M, et al. General scheme for superdense coding between multiparties. Physical Review A, 2002, 65: 022304

    Google Scholar 

  28. Shi B S, Jiang Y K, Guo G C. Probabilistic teleportation of two-particle entangled state. Physics Letters A, 2000, 268: 161–164

    Article  MathSciNet  MATH  Google Scholar 

  29. Gao T, Yan F L, Li Y C. Optimal controlled teleportation. e-print: arXiv:0710.1055

  30. Gao T, Yan F L, Li Y C. Optimal controlled teleportation via several kinds of three-qubit states. e-print: arXiv:0802.2469

  31. Acín A, Andrianov A, Costa L, et al. Generalized Schmidt decomposition and classification of three-quantum-bit states. Physical Review Letters, 2000, 85: 1560

    Article  Google Scholar 

  32. Verstraete F, Popp M, Cirac J I. Entanglement versus correlations in spin systems. Physical Review Letters, 2004, 92: 027901

    Google Scholar 

  33. Deng F G, Long G L, Liu X S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Physical Review A, 2003, 68: 042317

    Google Scholar 

  34. Deng F G, Long G L. Secure direct communication with a quantum one-time pad. Physical Review A, 2004, 69: 052319

    Google Scholar 

  35. Wang C, Deng F G, Long G L. Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Optics Communications, 2005, 252: 15

    Article  Google Scholar 

  36. Deng F G, Li X H, Zhou H Y. Opaque attack on threeparty quantum secret sharing based on entanglement. e-print: arXiv:0705.0279

  37. Li C Y, Zhou H Y, Wang Y, et al. Secure quantum key distribution network with Bell states and local unitary operations. Chinese Physics Letters, 2005, 22: 1049–1052

    Article  Google Scholar 

  38. Chen P, Deng F G, Long G L. High-dimension multiparty quantum secret sharing scheme with Einstein-Podolsky-Rosen pairs. Chinese Physics, 2006, 15: 2228–2235

    Article  Google Scholar 

  39. Deng F G, Li X H, Li C Y, et al. Quantum secure direct communication network with superdense coding and decoy photons. Physica Scripta, 2007, 76: 25–30

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuguo Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Deng, F. Controlled teleportation. Front. Comput. Sci. China 2, 147–160 (2008). https://doi.org/10.1007/s11704-008-0020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-008-0020-0

Keywords

Navigation