Skip to main content
Log in

An overview of quantum computation models: quantum automata

  • Review Article
  • Published:
Frontiers of Computer Science in China Aims and scope Submit manuscript

Abstract

Quantum automata, as theoretical models of quantum computers, include quantum finite automata (QFA), quantum sequential machines (QSM), quantum pushdown automata (QPDA), quantum Turing machines (QTM), quantum cellular automata (QCA), and the others, for example, automata theory based on quantum logic (orthomodular lattice-valued automata). In this paper, we try to outline a basic progress in the research on these models, focusing on QFA, QSM, QPDA, QTM, and orthomodular lattice-valued automata. Also, other models closely relative to them are mentioned. In particular, based on the existing results in the literature, we finally address a number of problems to be studied in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gruska J. Quantum Computing. London: McGraw-Hill, 1999

    Google Scholar 

  2. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000

    MATH  Google Scholar 

  3. Bennett C. Logical reversibility of computation. IBM Journal of Research and Development, 1973, 17: 525–532

    Article  MATH  Google Scholar 

  4. Benioff P. The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. Journal of Statistical Physics, 1980, 22: 563–591

    Article  MathSciNet  Google Scholar 

  5. Feynman R P. Simulating physics with computers. International Journal of Theoretical Physics, 1982, 21: 467–488

    Article  MathSciNet  Google Scholar 

  6. Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A, 1985, 400: 97–117

    Article  MathSciNet  MATH  Google Scholar 

  7. Yao A C. Quantum circuit complexity. In: Proceedings of the 34th IEEE Symposium on Foundations of Computer science. IEEE Computer Society Press, 1993, 352–361

  8. Shor P W. Algorithm for quantum computation: Discrete logarithms and factoring. In: Proceedings of the37th IEEE Annuual Symposium on Foundations of Computer science. IEEE Computer Society Press, 1994, 124–134

  9. Grover L. A fast quantum mechanical algorithms for datdbase search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing. New York: ACM, 1996, 212–219

    Google Scholar 

  10. Hopcroft J E, Ullman J D. Introduction to Automata Theory, Languages, and Computation. New York: Addision-Wesley, 1979

    MATH  Google Scholar 

  11. Moore C, Crutchfield J P. Quantum automata and quantum grammars. Theoretical Computer Science, 2000, 237: 275–306. Also see arXiv: quant-ph/9707031, 1997

    Article  MathSciNet  MATH  Google Scholar 

  12. Kondacs A, Watrous J. On the power of finite state automata. In: Proceedings of the 38th IEEE Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, 1997, 66–75

  13. Ambainis A, Freivalds R. One-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceedings of the 39th Annual Symposium on Foundations of Computer Science. Palo Alfo, California: IEEE Computer Society Press, 1998, 332–341, also see arXiv: quant-ph/9802062, 1998

    Google Scholar 

  14. Nayak A. Optimal lower bounds for quantum automata and random access codes. In: Proceedings of the 40th Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 1999, 124–133

  15. Ambainis A, Nayak A, Ta-Shma A, et al. Dense quantum coding and quantum automata. Journal of the ACM 2002, 49(4): 496–511

    Article  MathSciNet  Google Scholar 

  16. Ambainis A, Beaudry M, Golovkins M, et al. Algebraic results on quantum automata. Theory of Computing Systems, 2006, 39: 1654–1188

    Article  MathSciNet  Google Scholar 

  17. Amano M, Iwama K. Undecidability on quantum finite automata. In: Proceedings of the 31st Annual ACM Symposium on Theory of Computing. Atlanta, Georgia: ACM Computer Society Press, 1999, 368–375

    Google Scholar 

  18. Ambainis A, Watrous J. Two-way finite automata with quantum and classical states. Theoretical Computer Science, 2002, 287: 299–311

    Article  MathSciNet  MATH  Google Scholar 

  19. Bertoni A, Carpentieri M. Analogies and differences between quantum and stochastic automata. Theoretical Computer Science, 2001, 262: 69–81

    Article  MathSciNet  MATH  Google Scholar 

  20. Bertoni A, Carpentieri M. Regular Languages accepted by quantum automata. Information and Computation, 2001, 165: 174–182

    Article  MathSciNet  MATH  Google Scholar 

  21. Blondel V D, Jeandel E, Koiran P, et al. Decidable and undecidable problems about quantum automata. SIAM Journal on Computing, 2005, 34(6): 1464–1473

    Article  MathSciNet  MATH  Google Scholar 

  22. Bertoni A, Mereghetti C, Palano B. Quantum computing: 1-way quantum automata. In: Proceedings of the 9th International Conference on Developments in Language Theory (DLT’2003), Lecture Notes in Computer Science, 2003, 2710: 1–20

  23. Brodsky A, Pippenger N. Characterizations of 1-way quantum finite automata. SIAM Journal on Computing, 2002, 31: 1456–1478, also seequant-ph/9903014, 1999

    Article  MathSciNet  MATH  Google Scholar 

  24. Ambainis A, Kikusts A, Valdats M. On the class of languages recognizable by 1-way quantum finite automata. In: Proceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Computer Science, 2001, 2010: 305–316

  25. Qiu D W. Characterizations of quantum automata. Journal of Software, 2003, 14(1): 9–15, (in Chinese)

    MathSciNet  MATH  Google Scholar 

  26. Qiu D W, Ying M S. Characterizations of quantum automata. Theoretical Computer Science, 2004, 312: 479–489

    Article  MathSciNet  MATH  Google Scholar 

  27. Qiu D W. Some observations on two-way finite automata with quantum and classical states. see quant-ph/0701187, 2007

  28. Li L Z, Qiu D W. Determining the equivalence for one-way quantum finite automata. See quant-ph/0703087v2, 2007. Theoretical Computer Science (in press)

  29. Gudder S. Quantum computers. International Journal of Theoretical Physics, 2000, 39: 2151–2177

    Article  MathSciNet  MATH  Google Scholar 

  30. Qiu D W. Characterization of sequential quantum machines. International Journal of Theoretical Physics, 2002, 41: 811–822

    Article  MathSciNet  MATH  Google Scholar 

  31. Li L Z, Qiu D W. Determination of equivalence between quantum sequential machines. Theoretical Computer Science, 2006, 358: 65–74

    Article  MathSciNet  MATH  Google Scholar 

  32. Golovkins M. Quantum pushdown automata. In: Proceedings of the 27th Conference on Current Trends in Theory and Practice of Informatics. Lecture Notes in Computer Science, 2000, 1963: 336–346

  33. Nakanishi M. On the power of one-sided error quantum pushdown automata with classical stack operations. In: Proceedings of the 10th Annual International Computing and Combinatorics Conference (COCOON 2004). Lecture Notes in Computer Science, 2004, 3106: 179–187

  34. Bernstein E, Vazirani U. Quantum complexity theory. SIAM Journal on Computing, 1997, 26(5): 1411–1473

    Article  MathSciNet  MATH  Google Scholar 

  35. Nishimura H, Ozawa M. Computational complexity of uniform quantum circuit families and quantum Turing machines. Theoretical Computer Science, 2002, 276: 147–181

    Article  MathSciNet  MATH  Google Scholar 

  36. Watrous J. Space-bounded quantum complexity. Journal of Computer and System Sciences, 1999, 59(2): 281–326

    Article  MathSciNet  MATH  Google Scholar 

  37. Hirvensalo M. On quantum computation. PhD thesis, Turku Center for Computer Science, 1997

  38. Qiu D W. Simulations of quantum Turing machines by quantum multi-stack machines. In: Computability in Europe (CIE2008), Athens, Greece, June 15–20, 2008, also see arXiv: quant-ph/0501176, 2005

  39. Müller M. Strongly universal quantum Turing machines and invariance of Kolmogorov complexity. IEEE Transactions on Information Theory, 2008, 54(2): 763–780

    Article  Google Scholar 

  40. Watrous J. On one-dimensional cellular automata. In: Proceedings of the 36th IEEE Annual Symposium on Foundations of Computer Science. 1995, 528–537

  41. Dürr C, Santha M. A decision procedure for unitary linear quantum cellular automata. SIAM Journal on Computing, 2002, 31(4): 1076–1089

    Article  MathSciNet  MATH  Google Scholar 

  42. Ying M S. Automata theory based on quantum logic I. International Journal of Theoretical Physics, 2000, 39: 981–991

    Google Scholar 

  43. Ying M S. Automata theory based on quantum logic II. International Journal of Theoretical Physics, 2000, 39: 2545–2557

    Article  MathSciNet  MATH  Google Scholar 

  44. Qiu D W. Automata and grammar theory based on quantum logic. Journal of Software, 2003, 14(1): 23–27, (in Chinese)

    MathSciNet  MATH  Google Scholar 

  45. Qiu D W. Automata theory based on quantum logic: Some characterizations. Information and Compututation, 2004, 190: 179–195

    Article  MATH  Google Scholar 

  46. Lu R Q, Zheng H. Lattices of quantum automata. International Journal of Theoretical Physics, 2003, 42: 1425–1449

    Article  MathSciNet  Google Scholar 

  47. Cheng W, Wang J. Grammar theory based on quantum logic. International Journal of Theoretical Physics, 2003, 42: 1677–1691

    Article  MathSciNet  MATH  Google Scholar 

  48. Ying M S. A theory of computation based on quantum logic (I). Theoretical Computer Science, 2005, 344: 134–207

    Article  MathSciNet  MATH  Google Scholar 

  49. Qiu D W. Automata theory based on quantum logic: reversibilities and pushdown automata. Theoretical Computer Science, 2007, 386: 38–56

    Article  MathSciNet  MATH  Google Scholar 

  50. Qiu D W. Notes on automata theory based on quantum logic. Science in China (Series F: Information Sciences), 2007, 50(2): 154–169

    Article  MathSciNet  MATH  Google Scholar 

  51. Rabin M O. Probabilistic automata. Information and Control, 1963, 6: 230–244

    Article  Google Scholar 

  52. Paz A. Introduction to Probabilistic Automata. New York: Academic Press, 1971

    MATH  Google Scholar 

  53. Li L Z, Qiu D W. A polynomial-time algorithm for the equivalence between quantum sequential machines. see arXiv: quant-ph/0604085, 2006

  54. Tonder A V. A lambda calculus for quantum computation. SIAM Journal on Computing, 2004, 33(5): 1109–1135

    Article  MathSciNet  MATH  Google Scholar 

  55. Gudder S. Quantum automata: An overview. International Journal of Theoretical Physics, 1999, 38: 2261–2282

    Article  MathSciNet  MATH  Google Scholar 

  56. Koshiba T. Polynomial-time algorithms for the equivalence for one-way quantum finite automata. In: Proceedings of the 12th International Symposium on Algorithms and Computation (ISAAC’2001), Christchurch, New Zealand, Lecture Notes in Computer Science, 2001, 2223: 268–278

  57. Ambainis A, Bonner R, Freivalds R, et al. Probabilities to accept languages by quantum finite automata. In: Proceedings of COCOON’99, Lecture Notes in Computer Science, 1999, 1627: 174–183

  58. Ambainisa A, Kikusts A. Exact results for accepting probabilities of quantum automata. Theoretical Computer Science, 2003, 295: 3–25

    Article  MathSciNet  Google Scholar 

  59. Kikusts A. A small 1-way quantum finite automaton. see arXiv: quant-ph/9810065, 1998

  60. Ablayev F, Gainutdinova A. On the Lower Bounds for One-Way Quantum Automata. In: Proceedings of 25th International Symposium on Mathematical Foundations of Computer Science (MFCS’2000), Lecture Notes in Computer Science, 2000, 1893: 132–140

  61. Bertoni A, Mereghetti C, Palano B. Lower Bounds on the Size of Quantum Automata Accepting Unary Languages. In: Proceedings of 8th Italian Conference on Theoretical Computer Science (ICTCS’2003), Lecture Notes in Computer Science, 2003, 2841: 86–96

  62. Bertoni A, Mereghetti C, Palano B. Small size quantum automata recognizing some regular languages. Theoretical Computer Science, 2005, 340: 394–407

    Article  MathSciNet  MATH  Google Scholar 

  63. Mereghetti C, Palano B. Upper Bounds on the Size of One-Way Quantum Finite Automata, In: Proceedings of the 7th Italian Conference on Theoretical Computer Science (ICTCS’2001), Lecture Notes in Computer Science, 2001, 2202: 123–135

  64. Mereghetti C, Palano B. On the size of one-way quantum finite automata with periodic behaviors. Theoretical Informatics and Applications, 2002, 36: 277–291

    Article  MathSciNet  MATH  Google Scholar 

  65. Mereghetti C, Palano B. Quantum automata for some multiperiodic languages. Theoretical Computer Science, 2007, 387: 177–186

    MathSciNet  MATH  Google Scholar 

  66. Paschen K. Quantum finite automata using ancilla qubits. University of Karlsruhe, Technical Report, May 2000

  67. Freivalds R. Probabilistic two-way machines. In: Proceedings of the International Symposium on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, 1981, 188: 33–45

  68. Greenberg A, Weiss A. A lower bound for probabilistic algorithms for finite state machines. Journal of Computer and System Sciences, 1986, 33(1): 88–105

    Article  MathSciNet  MATH  Google Scholar 

  69. Dwork C, Stockmeyer L. A time-complexity gap for two-way probabilistic finite state automata. SIAM Journal on Computing, 1990, 19: 1011–1023

    Article  MathSciNet  MATH  Google Scholar 

  70. Kaneps J, Freivalds R. Running time to recognize nonregular languages by 2-way probabilistic automata. In: Proceedings of the 18th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science 1991, 510: 174–185

  71. Dwork C, Stockmeyer L. Finite state verifier I: the power of interaction. Journal of the ACM, 1992, 39(4): 800–828

    Article  MathSciNet  MATH  Google Scholar 

  72. Birkhoff G, von Neumann J. The logic of quantum mechanics. Annals of Mathematics, 1936, 37: 823–843

    Article  MathSciNet  Google Scholar 

  73. Pták P, Pulmannová S. Orthomodular Structures as Quantum Logics. Dordrecht: Kluwer, 1991

    MATH  Google Scholar 

  74. Qiu D W. Automata theory based on complete residuated lattice-valued logic. Science in China (Series F: Information Sciences), 2001, 44(6): 419–429

    MathSciNet  Google Scholar 

  75. Qiu D W. Automata theory based on complete residuated lattice-valued logic (II). Science in China (Series F: Information Sciences), 2002, 45(6): 442–452

    MathSciNet  MATH  Google Scholar 

  76. Ledda A, Konig M, Paoli F, et al. MV-algebras and quantum computation. Studia Logica, 2006, 82: 245–270

    Article  MathSciNet  MATH  Google Scholar 

  77. Deutsch D. Quantum computational networks. Proceedings of the Royal Society of London Series A, 1989, 400: 73–90

    MathSciNet  Google Scholar 

  78. Adleman L, DeMarrais J, Huang H. Quantum computability. SIAM Journal on Computing, 1997, 26(5): 1524–1540

    Article  MathSciNet  MATH  Google Scholar 

  79. Bennett C, Bernstein E, Brassard G, et al. Strengths and weaknesses of quantum computation. SIAM Journal on Computing, 1997, 26(5): 1510–1523

    Article  MathSciNet  MATH  Google Scholar 

  80. Cleve R. An Introduction to Quantum Complexity Theory. arXiv: quantph/9906111v1, 1999

  81. Fortnow L, Rogers J. Complexity limitations on quantum computation. Journal of Computer and System Sciences, 1999, 59(2): 240–252

    Article  MathSciNet  MATH  Google Scholar 

  82. Fortnow L. One complexity theorists view of quantum computing. Theoretical Computer Science, 2003, 292: 597–610

    Article  MathSciNet  MATH  Google Scholar 

  83. Simon D. On the power of quantum computation. SIAM Journal on Computing, 1997, 26(5): 1474–1483

    Article  MathSciNet  MATH  Google Scholar 

  84. Spakowski H, Thakur M, Tripathi R. Quantum and classical complexity classes: Separations, collapses, and closure properties. Information and Computation, 2005, 200(1): 1–34

    Article  MathSciNet  MATH  Google Scholar 

  85. Yu S. Regular Languages. In: Rozenberg G, Salomaa A, eds. Handbook of Formal Languages. Berlin: Spring-Verlag, 1998, 41–110

    Google Scholar 

  86. Nishimura H, Yamakami T. An application of quantum finite automata to interactive proof systems. In: Proceedings of the 9th International Conference on Implementation and Application of Automata. Lecture Notes in Computer Science. Berlin: Springer, 2004, 3317: 225–236

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daowen Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, D., Li, L. An overview of quantum computation models: quantum automata. Front. Comput. Sci. China 2, 193–207 (2008). https://doi.org/10.1007/s11704-008-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-008-0022-y

Keywords

Navigation