Skip to main content
Log in

High-dimension Bell inequalities

  • Review Article
  • Published:
Frontiers of Computer Science in China Aims and scope Submit manuscript

Abstract

In this article, we review the relationship between Bell inequality and its associated polytopes and introduce a method to extend Bell inequalities to more parties. According to this method, the Bell inequality in n parties can be extended to n + 1 parties. Such generalization is nontrivial in that there is stronger violation for new inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bell J S. On the Einstein-Podolsky-Rosen paradox. Physics, 1964, 1: 195–200

    Google Scholar 

  2. Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Physics Review, 1935, 47: 777–780

    Article  MATH  Google Scholar 

  3. Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories. Physical Review Letters, 1969, 23: 880–884

    Article  Google Scholar 

  4. Clauser J F, Horne M A. Experimental consequences of objective local theories. Physical Review D, 1974, 10: 526–535

    Article  Google Scholar 

  5. Greenberger D M, Horne M A, Zeilinger A. In: Kafatos M, ed. Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. Dordrecht: Kluwer Academic Publisher, 1989, 69

    Google Scholar 

  6. Ardehali M. Bell inequalities with a magnitude of violation that grows exponentially with the number of particles. Physical Review A, 1992, 46: 5375–5378

    Article  MathSciNet  Google Scholar 

  7. Belinskii A V, Klyshko D N. Interference of light and Bell’s theorem. Physics-Uspekhi, 1993, 36: 653–693

    Article  Google Scholar 

  8. Werner R F, Wolf M W. All-multipartite Bell-correlation inequalities for two di-chotomic observables per site. Physical Review A, 2001, 64: 032112

    Google Scholar 

  9. Weinfurter H, Zukowski M. Four-photon entanglement from down-conversion. Physical Review A, 2001, 64: 010102(R)

    Google Scholar 

  10. Zukowski M, Brukner Č. Bells theorem for general N-qubit states. Physical Review Letters. 2002, 88: 210401

    Google Scholar 

  11. Pitowsky I. Quantum probability-quantum logic (Lecture notes in physics 321). Foundations of Physics Letters, 1989; 2(3):297–298

    Article  Google Scholar 

  12. Pitowsky I, Svozil K. Optimal tests of quantum nonlocality. Physical Review A, 2001, 64:014102

    Google Scholar 

  13. Sliwa C. Symmetries of the Bell correlation inequalities. Physics Letters A, 2003, 317: 165

    Article  MATH  MathSciNet  Google Scholar 

  14. Wu X H, Zong H S. A new Bell inequality for three spin-half particle system. Physics Letters A, 2003, 307: 262

    Article  MATH  MathSciNet  Google Scholar 

  15. Wu X H, Zong H S. Violation of local realism by a system with N spin-1/2 particles. Physical Review A, 2003, 68: 032102

    Google Scholar 

  16. Laskowski W, Paterek T, Zukowski M, et al. Tight multipartite Bell’s inequalities involving many measurement settings. Physical Review Letters. 2004, 93: 200401

    Google Scholar 

  17. Paterek T, Laskowski W, Zukowski M. On series of multiqubit Bell’s inequalities. Modern Physics Letters A, 2006, 21: 111

    Article  MathSciNet  Google Scholar 

  18. Pitowsky I. The range of quantum probability. Journal of Mathematical Physics, 1986, 27(6): 1556–1565

    Article  MathSciNet  Google Scholar 

  19. Avis D, Imai H, Ito T. Two-party Bell inequalities derived from combinatorics via triangular elimination. Journal of Physics A: Mathematical and General, 2005, 38: 10971–10987

    Article  MATH  MathSciNet  Google Scholar 

  20. Avis D, Imai H, Ito T. On the relationship between convex bodies related to correlation experiments with dichotomic observables. Journal of Physics A: Mathematical and General, 2006, 39: 11283–11299

    Article  MATH  MathSciNet  Google Scholar 

  21. Pironia S. Lifting Bell inequalities. Journal of Mathematical Physics, 2005, 46: 062112

    Google Scholar 

  22. Zukowski M. All tight multipartite Bell correlation inequalities for three dichotomic observables per observer. arXiv:quant-ph/0611086

  23. Wieśniak M, Badziag P, Zukowski M. Explicit form of correlation function three-settings tight Bell inequalities for three qubits. Physical Review A, 2007, 76: 012110

    Google Scholar 

  24. Wu Y C, Wieśniak M, Badziag P, et al. Extending Bell inequalities to more parties. Physical Review A, 2008, 77: 032105

    Google Scholar 

  25. Ekert A K. Quantum cryptography based on Bells theorem. Physical Review Letters, 1991, 67: 661–663

    Article  MATH  MathSciNet  Google Scholar 

  26. Scarani V, Gisin N. Quantum communication between N partners and Bell’s inequalities. Physical Review Letters, 2001, 87: 117901

    Google Scholar 

  27. Brukner C, Zukowski M, Pan J W, et al. Bells inequalities and quantum communication complexity. Physical Review Letters, 2004, 92: 127901

    Google Scholar 

  28. Acin A, Gisin N, Masanes L, et al. Bell’s inequalities detect efficient entanglement. International Journal of Quantum Information, 2004, 2: 23

    Article  MATH  Google Scholar 

  29. Gisin N. Bell inequalities: many questions, a few answers. arXiv: quant-ph/0102021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchun Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Guo, G. High-dimension Bell inequalities. Front. Comput. Sci. China 2, 190–192 (2008). https://doi.org/10.1007/s11704-008-0023-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-008-0023-x

Keywords

Navigation