
Matching Dependencies: Semantics and Query Answering

Jaffer Gardezi
University of Ottawa, SITE

Ottawa, Canada
jgard082@uottawa.ca

Leopoldo Bertossi
Carleton University, SCS

Ottawa, Canada
bertossi@scs.carleton.ca

Iluju Kiringa
University of Ottawa, SITE

Ottawa, Canada
kiringa@site.uottawa.ca

ABSTRACT
Matching dependencies (MDs) are used to declaratively spec-
ify the identification (or matching) of certain attribute val-
ues in pairs of database tuples when some similarity condi-
tions on other values are satisfied. Their enforcement can
be seen as a natural generalization of entity resolution. In
what we call the pure case of MD enforcement, an arbitrary
value from the underlying data domain can be used for the
value in common that is used for a matching. However, the
overall number of changes of attribute values is expected to
be kept to a minimum. We investigate this case in terms of
semantics and the properties of data cleaning through the
enforcement of MDs. We characterize the intended clean in-
stances, and also the clean answers to queries, as those that
are invariant under the cleaning process. The complexity
of computing clean instances and clean query answering is
investigated. Tractable and intractable cases depending on
the MDs are identified and characterized.

Keywords: Databases, data cleaning, duplicate and entity
resolution, integrity constraints, matching dependencies

1. INTRODUCTION
A relational database instance can be seen as a model of an

external reality. As such, it may contain tuples and values in
them that refer to the same external entity. In consequence,
the database may be modeling the same entity in different
forms, as different entities. This may be, most likely, not
the intended representation. This is a problem that can be
due to many different factors, among them, erroneous data
entry, different sources of data, the use of different formats
or semantics, etc. In this case, the database is considered to
contain dirty data, and it must undergo a cleansing process.

For this particular kind of data dirtiness, namely unin-
tended multiple representations of the same external entity,
the cleaning process goes through two interlinked phases:
detecting tuples (or values therein) that should be matched
or identified; and next, doing the actual matching. This
problem and process is usually called entity resolution, data
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fusion, duplicate record detection, etc. Cf. [16, 12] for some
recent surveys, and [5] for more recent work in the area.

Quite recently, and generalizing entity resolution, [17, 18]
introduced matching dependencies (MDs), which are declar-
ative specifications of matchings of attribute values that
should be made when certain conditions are satisfied. MDs
help identify duplicate data and enforce their merging by
exploiting semantic knowledge.

Loosely speaking, an MD is a rule defined on a database
which states that, for any pair of tuples from given relations
within the database, if the values of certain attributes of the
tuples are similar, then the values of another set of attributes
should be considered to represent the same object. In con-
sequence, they should take the same values. Here, similarity
of values can mean equality or a domain-dependent similar-
ity relationship, e.g. related to some metric, such as the edit
distance.

Example 1. Consider the following instance of a database
predicate P :

Name Phone Address
John Smith 723-9583 10-43 Oak St.
J. Smith (750) 723-9583 43 Oak St. Ap. 10

The similarity of the names in the two tuples may be
insufficient to establish that the tuples refer to the same
person. This is because the last name is rather common, and
only the first initial of one of the names is given. However,
the similarities of their phone and address values indicate
that the two tuples may be duplicates, and refer to the same
individual. In this case, the names should be merged. This
requirement is expressed by an MD which states that, if any
two tuples from P have similar address and phone, then the
names should be matched. This is expressed in MD notation
by

P [Phone] ≈ph P [Phone] ∧ P [Address] ≈a P [Address]
→ P [Name]

.
= P [Name],

where≈ph ,≈a are application (and attribute) dependent sim-
ilarity relations for phone numbers and addresses. �

The identification in [17, 18] of this new class of depen-
dencies and their declarative formulation have become im-
portant additions to data cleaning research. In this work,
we further investigate MDs, starting by introducing our own
refinement of the model-theoretic and dynamic semantics of
MDs introduced in [18].

Any method of querying a dirty data source must address
the issues of duplicate presence, detection, and resolution.
The accuracy of query answering depends on them. Query



answering is typically done by first cleaning the data, by
discarding or combining duplicate tuples and standardizing
formats. The result of this process becomes a new, clean
database where the entity conflicts have been resolved. The
next step is directly querying the resulting database, and
computing answers from it, as usual.

However, the entity resolution problem may have differ-
ent solution instances (which we will simply call solutions).
That is, different clean versions of the original database may
arise and could be considered. In consequence, the query
answers obtained via a particular solution may differ from
those obtained using an alternative solution. We would like
and expect that, given the initial, dirty instance, the accept-
able query answers are those that are robust or invariant
under the choice of individual clean instances. So, it be-
comes relevant to characterize those query answers that are
invariant under the different (sensible) ways of cleaning the
data.

If we assume that the relevant aspects of the entity res-
olution process to be applied to a given, possibly dirty in-
stance, D, are captured by a set M of MDs associated to D’s
schema, then the issues we just mentioned can be properly
taken care of by first providing the right semantics for MDs.
As usual in many areas of data management and knowledge
representation, this amounts to characterizing a class of in-
tended clean instances, i.e. those that are acceptable results
of enforcing M on D. This is a form of model-theoretic se-
mantics, that in this paper we introduce and investigate.
After doing this, the intended, semantically clean answers
to a query are defined as those that persist across all the
intended clean instances.

Characterizing and computing the clean query answers to
queries is an interesting problem per se. However, it becomes
crucial if we want to avoid computing and materializing all
the possible clean instances, individually querying them, and
collecting the answers in common. Ideally, one would like to
obtain clean answers by querying nothing but the original
dirty data source. Actually, this aspiration becomes a must
when querying virtual data integration systems, where a cen-
tral user does not have access or control over the sources, on
which a material cleaning would have to be applied.

Similar problems have been investigated in the area of con-
sistent query answering (CQA) [2], where, instead of MDs,
classical integrity constraints (ICs) are considered. In that
case, inconsistent database instances that violate the ICs are
repaired in order to restore consistency. Also query rewrit-
ing methodologies for CQA have been proposed. With them
CQA can be obtained by (appropriately) querying the ini-
tial inconsistent database. Cf. [6, 15, 7] for surveys of CQA.
CQA in virtual data integration systems has also been in-
vestigated [8].

In this whole work, and in particular in the development
of the semantics of MDs, we concentrate on what we call the
pure case of MDs, the closest to the way MDs were intro-
duced in [18]. In it, the values that can be chosen to match
attribute values are arbitrarily taken from the underlying
data domains. In Example 1, any name in common could
be chosen for the matching, in principle. However, the total
number of changes of attribute values that are due to the
matchings should be minimized. As an alternative, entity
resolution based on the use of matching functions that pro-
vide values for the matchings has also been investigated. In
[5] entire tuples (records) are merged as opposed to individ-

ual attribute values. In [10], the combination of MDs and
matching functions is formally developed.

In this paper we make, among others, the following con-
tributions:

1. We revisit the semantics of MDs introduced in [18],
pointing out sensible and justified modifications that
it requires.

2. A new semantics for MD satisfaction is then proposed
and formally developed.

3. We formally define the intended solution instances for
a given, initial instance, D0, that is subject to a set
of MDs. They are called minimally resolved instances
(MRIs).

MRIs are obtained through an iterative process that
stepwise enforces the MDs until a stable instance is
reached (i.e. no more MDs are applicable). The result-
ing instances minimally differ from D0 wrt the number
of changes of attribute values.

4. We introduce the notion of resolved answers to a query
posed to D0. They are the semantically clean answers,
that are invariant under the MRIs.

5. We investigate the complexity of computing resolved
answers. In particular, we establish a general upper
bound of ΠP

2 on data complexity. We also identify
classes of MDs and queries for which resolved query
answering is NP -hard. We also show some tractable
cases.

6. We establish some comparisons between MRIs wrt MDs
and database repairs wrt functional dependencies, show-
ing in particular, that the former cannot be obtained
from the latter.

This paper is organized as follows. Section 2 presents ba-
sic concepts and notations needed in the rest of the paper.
Section 3 discusses the original MD semantics and proposes
a revised version. In doing so, it introduces the notion of
resolved instance for a given initial instance. Section 4 in-
troduces the notion of resolved answer to a query, and in-
vestigates the computation and complexity of resolved an-
swers. Section 5 presents some final conclusions, and points
to ongoing and future work. This paper is a revised and
extended version of [22]. Among other extensions, we in-
clude the proofs of the results stated there, and also the so
far unpublished complexity upper bound for resolved query
answering.

2. PRELIMINARIES
We consider a relational schema S that includes an enu-

merable infinite domain U . Database predicates in S have
attributes, say A, whose domains, Dom(A), are subsets of U .
We sometimes refer to attribute A of a relation R by R[A].
We assume that (some) attributes have binary similarity re-
lations ≈A on Dom(A). They are reflexive and symmetric,
and are treated as built-in predicates.

An instance D of S is a finite set of ground atoms (or
tuples) of the form R(t̄), where R is a database predicate in
S , and t̄ is a tuple of constants from U . We assume that each
database tuple has an identifier. It can be seen as a unique
value in an extra attribute that acts as a key for the relation



and is not subject to updates. In the following, it will be
usually omitted, unless necessary, as one of the attributes of
a database predicate. It plays an auxiliary role only, to keep
track of updates on the other attributes.

For a predicate R ∈ S , R(D) denotes instanceD restricted
to R (commonly referred to as the extension of R in D).
If the ith attribute of predicate R is A, for a tuple t =
(c1, . . . , cj) ∈ R(D), t[A] denotes the value ci. The symbol
t[Ā] denotes the sequence whose entries are the values of the
attributes in sequence of attributes Ā.

A matching dependency [17], involving predicates
R(A1, . . . , An), S(B1, . . . , Bp), is a symbolic expression (or
a rule) of the form

∧

i∈I,j∈J

R[Ai] ≈ij S[Bj ] →
∧

i∈I′,j∈J′
R[Ai]

.
= S[Bj ]. (1)

Here, I, I ′ and J, J ′ are fixed subsets of {1, . . . , n} and
{1, . . . , p}, resp. We assume that, when the attributes Ai, Bj

are related via ≈ij or
.
= in (1), they share the same domain,

so their values can be compared by the domain-dependent
binary similarity predicate, ≈ij or can be identified, resp.
In (1), R and S could be the same predicate, as in Example
1. In this paper, we will assume that there is at most one
similarity relation on an attribute domain.

The similarity relations, generically denoted with ≈, are
assumed to have the properties of: (a) Symmetry: If x ≈ y,
then y ≈ x. (b) Equality subsumption: If x = y, then x ≈ y.

The MD in (1) is intended to state an implicit universal
quantifications over pairs of tuples t1, t2 for R and S, resp.
The expression

∧
R[Ai] ≈ij S[Bj ] on the LHS of the arrow

states that the values of the attributes Ai in tuple t1 are
similar to those of attributes Bj in tuple t2.

There are two complimentary ways of interpreting this
MD: statically and dynamically. According to the static
interpretation, the MD is read as an implication, similar to
a functional dependency (FD). It says that, if

∧
R[Ai] ≈ij

S[Bj ] holds, then, for each pair (Ai, Bj) such that R[Ai]
.
=

S[Bj ] appears on the RHS, and for the same tuples t1 and
t2, t1[Ai] and t2[Bj ] are equal. The dynamic interpretation
of the MD states that if the similarity conditions hold, such
pairs of attribute values should be updated so that they
become the same for t1 and t2. However, the attribute values
to be used for this matching are left unspecified by (1). The
static interpretation is useful for identifying dirty data, while
the dynamic interpretation can be used as the basis for data
cleaning procedure.

For abbreviation, we will sometimes write MDs as

R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē], (2)

where Ā, B̄, C̄, and Ē represent the lists of attributes,
(A1, ..., Ak), (B1, ..., Bk), (C1, ..., Ck′), and (E1, ..., Ek′), re-
spectively. We refer to the pairs of attributes (Ai, Bi) and
(Ci, Ei) as corresponding pairs of attributes of the pairs
(Ā, B̄) and (C̄, Ē), respectively.

For an instance D and a pair of tuples t1 ∈ R(D) and
t2 ∈ S(D), t1[Ā] ≈ t2[B̄] indicates that the similarities of
the values for all corresponding pairs of attributes of (Ā, B̄)
hold. Similarly, t1[C̄] = t2[Ē] denotes the equality of the
values of all pairs of corresponding attributes of (C̄, Ē).

In the dynamic interpretation, an MD involves update
operations, to satisfy it. This requires a precise definition of
satisfaction of an MD by a pair of database instances: An
instance D and its updated instance D′, as required by the

MD.

Definition 1. [18] LetD,D′ be instances of schema S with
predicates R and S, such that, for each tuple t in D, there
is a unique tuple t′ in D′ with the same identifier as t, and
viceversa. The pair (D,D′) satisfies the MD m in (2), de-
noted (D,D′) �F m, iff, for every pair of tuples tR ∈ R(D)
and tS ∈ S(D), if tR and tS satisfy tR[Ā] ≈ tS [B̄], then for
the corresponding tuples t′R and t′S in R(D′), S(D′), resp.,
it holds: (a) t′R[C̄] = t′S[Ē], and (b) t′R[Ā] ≈ t′S[B̄]. �

Intuitively, D′ in Definition 1 is an instance obtained from
D by enforcing m on instance D. For a set M of MDs,
and a pair of instances (D,D′), (D,D′) �F M means that
(D,D′) �F m, for every m ∈ M . Condition (b) in Definition
1 requires that the identification updates do not destroy the
original similarities.

An instance D′ is stable [18] for a set M of MDs if (D′, D′)
�F M . Stability of an instance is a static concept, analo-
gous to satisfaction by the instance D′ of a set of FDs. Sta-
ble instances correspond to the intuitive notion of a clean
database, in the sense that all the expected value identi-
fications already take place in it. Although not explicitly
developed in [18], for an instance D, if (D,D′) �F M for a
stable instance D′, then D′ is expected to be reachable as a
fix-point of an iteration of value identification updates that
starts from D and is based on M .

3. THE MD SEMANTICS REVISITED
The requirement of keeping similarities after identification

updates (cf. Definition 1) is a strong requirement that may
lead to counterintuitive results.

Example 2. Consider the following instanceD with string-
valued attributes, and MDs:

R(D) A B C
a c g
a c ksp

S(D) E F
h c
msp c

R[A] ≈ R[A] → R[C]
.
= R[C] (3)

R[C] ≈ S[E] → R[B]
.
= S[F ] (4)

In this example, we assume that, for two strings s1 and s2,
s1 ≈ s2 holds when the edit distance d between s1 and
s2 satisfies d ≤ 1. To produce an instance D′ satisfying
(D,D′) �F M , the strings g and ksp must be changed to
some common string s′.

Because of the similarities h ≈ g and ksp ≈ msp, s′ must
be similar to the values for attribute E in the tuples in S,
due to condition (b) of Definition 1 and MD (4). Clearly,
there is no s′ that is similar to both h and msp. Therefore,
at least one of h and msp must be modified to some new
value in D′. �

Another problem with the semantics of MD satisfaction
is that it allows duplicate resolution in instances that are
already resolved. Intuitively, there is no reason to change
the values in an instance that is stable for a set of MDs M ,
because there is no reason to believe, on the basis of M ,
that these values are in error. However, even if an instance
D satisfies (D,D) �F M , it is always possible, by choosing
different common values, to produce a different instance D′

such that (D,D′) �F M . This is illustrated in the next
example.



Example 3. Let D be the instance below and the MD
R[A] ≈ R[A] → R[B]

.
= R[B].

R(D) A B
a c
a c

Although D is stable, (D,D′) �F m is true for any D′ where
the values for attribute B in the two tuples are the same,
e.g. d. �

3.1 MD satisfaction
We now propose a modified semantics for MD satisfaction,

that disallows unjustified attribute modifications. We keep
condition (a) of Definition 1, while replacing condition (b)
with a restriction on the possible updates that can be made.

Definition 2. Let D be an instance, M a set of MDs, and
P be a set of pairs (t, G), where t is a tuple of D and G is
an attribute of t.
(a) For a tuple tR ∈ R(D) and C an attribute of R, the value
tDR [C] is modifiable wrt. P if there exist S ∈ R, tS ∈ S(D),
an m ∈ M of the form

R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē],

and a corresponding pair (C,E) of (C̄, Ē) in m, such that
(tS, E) ∈ P and one of the following holds:

1. tR[Ā] ≈ tS[B̄], but tR[C] �= tS[E].

2. tR[Ā] ≈ tS[B̄] and tS[E] is modifiable wrt. P�{(tS , E)}.
(b) The value tDR [C] is modifiable if it is modifiable wrt.
V � {(tR, C)}, where V is the set of all pairs (t, G) with t a
tuple of D and G an attribute of t. �

Definition 2 is recursive. The base case occurs when ei-
ther case 1 applies (with any P) or when there is no tu-
ple/attribute pair in P that can satisfy part (a). Notice
that recursion must terminate eventually, since the latter
condition must be satisfied when P is empty, and each re-
cursive call reduces the size of P . The following example
illustrates the definition.

Example 4. Consider m : R[A] ≈ R[A] → R[B]
.
= R[B]

on schema R[A,B], and the following instance. Assume that
the only non-trivial similarities are a1 ≈ a2 ≈ a3 and b1 ≈
b2. Since a2 ≈ a3 and c1 �= c3, t2[B] and t3[B] are modifiable
(base case). With case 2 of Definition 2, since a1 ≈ a2, and
t2[B] is modifiable, we obtain that t1[B] is modifiable.

R(D) A B
t1 a1 c1
t2 a2 c1
t3 a3 c3
t4 b1 c3
t5 b2 c3

For t5[B] to be modifiable, it must be modifiable wrt.
{(ti, B) | 1 ≤ i ≤ 4}, and via t4. According to case 2
of Definition 2, this requires t4[B] to be modifiable wrt.
{(ti, B) | 1 ≤ i ≤ 3}. However, this is not the case since
there is no ti, 1 ≤ i ≤ 3, such that t4[A] ≈ ti[A]. Therefore
t5[B] is not modifiable. A symmetric argument shows that
t4[B] is not modifiable. �

Definition 3. Let D, D′ be instances for S with the same
tuple ids, and M a set of MDs. (D,D′) satisfies M , denoted
(D,D′) � M, iff:
(a) For any pair of tuples tR ∈ R(D), tS ∈ S(D), if there
exists an MD in M of the form R[Ā] ≈ S[B̄] → R[C̄]

.
= S[Ē]

and tR[Ā] ≈ tS[B̄], then for the corresponding tuples t′R ∈
R(D′) and t′S ∈ S(D′), it holds t′R[C̄] = t′S[Ē].
(b) For any tuple tR ∈ R(D) and any attribute G of R, if
tR[G] is not modifiable, then t′R[G] = tR[G]. �

Here, condition (b) captures a natural default condition of
persistence of values: Only those that have to be changed are
changed. Notice that now we are not requiring persistence
of similarities. As before, we define stable instance D for M
to mean (D,D) � M . Except where otherwise noted, these
are the notions of satisfaction and stability that will be used
in the rest of this paper.

Example 5. (example 4 continued) The instances D′ such
that (D,D′) � M are all those obtained from D by changing
the values of t1[B], t2[B], and t3[B] to a common value, and
leaving all other values unchanged. This is because these
values are the only modifiable values, and they must be equal
by condition (a) of Definition 3 and the given similarities. �

Condition (b) in Definition 3 on the set of updatable val-
ues does not prevent us from obtaining instances D′ that
enforce the MD, as the following theorem establishes.

Theorem 1. For any instance D and set of MDs M , there
exists a D′ such that (D,D′) � M . Moreover, for any at-
tribute value that is changed from D to D′, the new value
can be chosen arbitrarily, as long as it is consistent with
(D,D′) � M .

Proof: Consider an undirected graph G whose vertices are
labelled by pairs (t, A), where t is a tuple identifier and A
is an attribute of t. There is an edge between two vertices
(s,A) and (t, B) iff s and t satisfy the similarity condition
of some MD m ∈ M such that A and B are matched by m.

Update D as follows. Choose a vertex (t1, A) such that
there is another vertex (t2, B) connected to (t1, A) by an
edge and t1[A] and t2[B] must be made equal to satisfy the
equalities in condition (a) of Definition 3. For convenience
in this proof, we say that t2 is unequal to t1 for such a pair
of tuples t1 and t2. Perform a breadth first search (BFS) on
G starting with (t1, A) as level 0. During the search, if a
tuple is discovered at level i+ 1 that is unequal to an adja-
cent tuple at level i, the value of the attribute in the former
tuple is modified so that it matches that of the latter tuple.
When the BFS has completed, another vertex with an adja-
cent unequal tuple is chosen and another BFS is performed.
This continues until no such vertices remain. It is clear that
the resulting updated instance D′ satisfies condition (a) of
Definition 3.

We now show by induction on the levels of the breadth first
searches that for all vertices (t,A) visited, t[A] is modifiable.
This is true in the base case, by choice of the starting vertex.
Suppose it is true for all levels up to and including the ith

level. By definition of the graph G and condition (b) of
Definition 2, the statement is true for all vertices at the
(i+1)th level. This proves the first statement of the theorem.

To prove the second statement, we show that, to satisfy
condition (a) of Definition 3, the attribute values represented



by each vertex in each connected component of G must be
changed to a common value in the new instance. The state-
ment then follows from the fact that the update algorithm
can be modified so that the attribute value for the initial
vertex in each BFS is updated to some arbitrary value at
the start (since it is modifiable). By condition (a) of Defini-
tion 3, the pairs of values that must be equal in the updated
instance D′ correspond to those vertices that are connected
by an edge in G. This fact and transitivity of equality imply
that all attribute values in a connected component must be
updated to a common value. �

The new semantics introduced in Definition 3 solves the
problems mentioned at the beginning of this section. No-
tice that it does not require additional changes to preserve
similarities (if the original ones were broken). Furthermore,
modifications of instances, unless required by the enforce-
ment of matchings as specified by the MDs, are not allowed.
Also notice that the instance D′ in Theorem 1 is not guaran-
teed to be stable. We address this issue in the next section.

Moreover, as can be seen from the proof of Theorem 1,
the new restriction imposed by Definition 3 is as strong as
possible in the following sense: Any definition of MD satis-
faction that includes condition (a) must allow the modifica-
tion of the modifiable attributes (according to Definition 2).
Otherwise, it is not possible to ensure, for arbitrary D, the
existence of an instance D′ with (D,D′) � M .

3.2 Resolved instances
According to the MD semantics in [18], although not ex-

plicitly stated there, a clean version D′ of an instance D is
an instance D′ satisfying the conditions (D,D′) |= M and
(D′, D′) |= M . Due to the natural restrictions on updates
captured by the new semantics (cf. Definition 3), the ex-
istence of such a D′ is not guaranteed. Essentially, this is
because D′ is the result of a series of updates. The MDs
are applied to the original instance D to produce a new in-
stance, which may have new pairs of similar values, forcing
another application of the MDs, which in their turn pro-
duces another instance, and so on, until a stable instance
D′ is reached. The pair (D,D′) may not satisfy M .

However, we will still be interested in the stable instances
D′ obtained through such an iterative enforcement of MDs.
We are willing to relax the condition (D,D′) � M , but we
will make sure, at each step k, that (Dk−1, Dk) |= M .

Definition 4. Let D be a database instance and M a set
of MDs. A resolved instance for D wrt M is an instance
D′, such that there is a finite (possibly empty) sequence of
instances D1, D2, ...Dn with: (D,D1) � M , (D1, D2) � M ,...
(Dn−1, Dn) � M , (Dn, D

′) � M , and (D′, D′) � M . �

Notice that, by Definition 3, for an instance D satisfying
(D,D) |= M , it holds (D,D′) |= M if and only if D′ = D.
In this case, the only possible set of intermediate instances
is the empty set and D is the only resolved instance. Thus,
a resolved instance cannot be obtained by making changes
to an instance that is already resolved.

Resolved instances have been defined here by means of a
chase-like iterative mechanism [1]. Our next result tells us
that we can always obtain a resolved instance.

Theorem 2. Given an instance D and a set M of MDs,
there always exists a resolved instance for D with respect to
M .

Proof: We give an algorithm to compute a resolved instance,
and use a monotonicity property to show that it always ter-
minates. For attribute domain d in D, consider the set Sd

of pairs (t, A) such that attribute A of the tuple with iden-
tifier t has domain d. Let {S1, S2, ...Sn} be a partition of
Sd into sets such that all tuple/attribute pairs in a set have
the same value in D. Define the level of (t, A) to mean |Sj |
where (t, A) ∈ Sj .

The algorithm first applies all MDs in M to D by setting
equal pairs of unequal values according to the MDs. Specifi-
cally, consider a connected component C of the graph in the
proof of Theorem 1. If the values of t[A] for all pairs (t, A)
in C are not all the same, then their values are modified to
a common value which is that of the pair with the highest
level. This update is allowed by Theorem 1. In the case
of a tie, the common value is chosen as the largest of the
values according to some total ordering of the values from
the domain that occur in the instance. It is easily verified
that this operation increases the sum over all the levels of
the elements of Sd, where d is the domain of the attributes
of the pairs in C. These updates produce an instance D1

such that (D,D1) � M .
The MDs of M are then applied to the instance D1 to ob-

tain a new instance D2 such that (D1, D2) � M and so on,
until a stable instance is reached. For each new instance,
the sum over all domains d of the levels of the (t, A) ∈ Sd is
greater than for the previous instance. Since this quantity
is bounded above, the algorithm terminates with a resolved
instance. �

Example 6. Consider the following instance D of a rela-
tion R and set M of MDs:

R(D) A B C
a b d
a c e
a b e

R[A] ≈ R[A] → R[B]
.
= R[B],

R[B] ≈ R[B] → R[C]
.
= R[C].

We assume that all pairs of distinct constants in R are dis-
similar. The following instances, D1 and D2, are resolved
instances of R:

R(D1) A B C
a b d
a b d
a b d

R(D2) A B C
a b e
a b e
a b e

Notice that (D,D1) �|= M , because the value of the C at-
tribute in the second tuple is not modifiable in D. This
shows that some resolved instances cannot be obtained in a
single update step, with updated instances as in Definition
4. �

Although Theorem 2 implies that, for any instance, the
chase in Definition 4 terminates for some choice of update
values, this is not necessarily the case for all choices of up-
date values, as the next example shows.

Example 7. Consider the following set of MDs and in-
stance D:

m1 : R[A] ≈ R[A] → R[B]
.
= R[B]

m2 : R[B] ≈ R[B] → R[A]
.
= R[A]



R(D) A B
1 a a
2 b a
3 b b

Here, the similarity relation is the equality. To specify the
value that results when a pair of values are merged, we
use the idempotent and commutative function f defined by
f(a, b) = c, f(c, b) = a, and f(c, a) = b. Instance D is
recovered after six updates starting from D:

R(D1) A B
1 c a
2 c c
3 b c

→
R(D2) A B

1 c b
2 a b
3 a c

→

R(D3) A B
1 b b
2 b a
3 a a

→
R(D4) A B

1 b c
2 c c
3 c a

→

R(D5) A B
1 a c
2 a b
3 c b

→
R(D6) A B

1 a a
2 b a
3 b b

Therefore, this choice of update values results in an infi-
nite chase sequence. Notice that the merge function in this
example is non-associative, e.g. f(a, f(b, c)) = a �= c =
f(f(a, b), c). For idempotent, commutative and associative
merge functions, all the chase sequences finitely terminate
[10, 11]. �

The notion of resolved instance is a first step towards the
characterization of the intended clean instances. However,
it still leaves room for refinement. Actually, the resolved
instances that are of most interest for us are those that are
somehow closest to the original instance. This considera-
tion leads to the concept of minimally resolved instance. It
uses as a measure of change the number of values that were
modified to obtain the final clean instance. In Example 6,
instance D2 is a minimally resolved instance, whereas D1 is
not.

Definition 5. Let D be an instance.
(a) TD := {(t, A) | t is the id of a tuple in D and A is an

attribute of the tuple}.
(b) fD : TD → U is given by: fD(t, A) := the value for A
in the tuple in D with id t.
(c) For an instance D′ with the same tuple ids as D:

SD,D′ := {(t, A) ∈ TD | fD(t, A) �= fD′(t, A)}. �

Intuitively, SD,D′ is the set of all “positions” within the
instance such that the value at that position is changed when
going from D to D′.

Definition 6. Let D be an instance and M a set of MDs.
A minimally resolved instance (MRI) of D wrt M is a re-
solved instance D′ such that |SD,D′ | is minimum, i.e. there
is no resolved instance D′′ with |SD,D′′ | < |SD,D′ |. We de-
note with Res(D,M) the set of minimal resolved instances
of D wrt the set M of MDs. �

Example 8. Consider the instance below and the MD

R A B
a1 b1

S C D
c1 d1

R[A] ≈ S[C] → R[B]
.
= S[D].

Assuming that a1 ≈ c1, this instance has two minimally re-
solved instances, namely

R A B
a1 d1

S C D
c1 d1

R A B
a1 b1

S C D
c1 b1 �

Considering that MDs concentrate on changes of attribute
values, we consider that this notion of minimality is appro-
priate. The comparisons have to be made at the attribute
value level. Since minimality is based on comparison of nat-
ural numbers (number of changes), from Theorem 2 we im-
mediately obtain

Corollary 1. Every instance D has at least one MRI wrt
a set of MDs. �

In CQA and database repairing, this kind of minimality
has also been used [21, 20]. However, several other notions of
minimality and comparison of instances have also been ap-
plied and investigated, most prominently the one based on
tuple insertion/deletion and minimal symmetric set differ-
ence [2]. Cf. [7, section 2.5] for a survey of repair semantics.

In this subsection, we defined the MRIs, which we use as
our model of a clean database instance. They capture the
dynamic interpretation of MDs. This observation leads us
to wonder if we could have taken a more traditional, static
approach, in which the MDs are interpreted as integrity con-
straints and the clean instances as database repairs. We now
show by means of an example that such an approach is not
appropriate in the MD context.

Example 9. Consider the following instance of a relation
R and MD:

R A B
a b
a d

R[A] = R[A] → R[B]
.
= R[B].

Here, the similarity relation is the equality, and we assume,
as usual, that for pairs of distinct constants in R the in-
equality holds.

Suppose we view the MD as a functional dependency to be
satisfied by R, replacing

.
= by =. The given instance would

be inconsistent. Furthermore, consider the repairs (in the
sense of CQA) that would be obtained via attribute mod-
ification [21, 28, 9, 20, 6], and minimality as in Definition
6.

It follows immediately from Definition 6 that all MRIs are
repairs. However, not every repair would be a MRI, because
one way of repairing the instance would be to change one
of the values in the A column, e.g. to b. In the context
of duplicate resolution this would be undesirable. Actually,
the appropriate way to repair R would be to set the values
in the B column to a common value. �



In failing to restrict the allowed updates, an approach
that defines MDs as traditional integrity constraints will lead
to undesirable repairs, and will not provide an appropriate
semantics for MD-based entity resolution.

The requirement of Definition 6 of minimizing the number
of changes leading to an MRI can be relaxed, to allow MRIs
whose change is within some percentage of the minimum
without affecting any of the results presented here. This
might be a more appropriate definition in certain duplicate
resolution settings.

In this work we are investigating what we could call “the
pure case” of MD-based entity resolution. It adheres to the
original semantics outlined in [18], which does not specify
how the matchings are to be done, but only which values
must be made equal. That is, the MDs have implicit existen-
tial quantifiers (for the values in common). The semantics
we just introduced formally captures this pure case. We find
situations like this in other areas of data management, e.g.
with referential integrity constraints, tuple-generating de-
pendencies in general [1], schema mappings in data exchange
[4], etc. A non-pure case that uses matching functions to re-
alize the matchings as prescribed by MDs is investigated in
[10, 11, 3].

4. RESOLVED QUERY ANSWERS
Having defined the MRIs as the intended instances for

an MD-based entity resolution, we are in position to define
the resolved answers to a query. Intuitively, these are the
answers that are true in all MRIs. This is analogous to
CQA, where a consistent answer to a query is defined as
being true in all minimal repairs of a database that violates
a set of integrity constraints [2].

Let Q(x̄) be a query expressed in the first-order language
L(S) associated to schema S . Here, x̄ represents the se-
quence of free variables, say x̄ = x1 · · ·xn, whose combina-
tions of values from the database instance form the answers
to the query. More precisely, c̄ = c1 · · · cn, with ci ∈ U , is
an answer to Q from instance D, denoted D |= Q[c̄], iff (the
FO formula representing) Q(x̄) becomes true in D when the
variables xi take the values ci.

A query is conjunctive when it is of the form

Q(x̄) : ∃ȳ(A1(x̄1) ∧ · · · ∧Ak(x̄k)),

where theAi(x̄i) are atoms of L(S), and each of the variables
in x̄ appears in some of the x̄i, but among those not in ȳ.

Now we are in position to characterize the admissible an-
swers to Q from D, as those that are invariant under the
matching resolution process.

Definition 7. A sequence of constants c̄ is a resolved an-
swer to Q(x̄) wrt the set M of MDs, denoted D |=M Q[c̄],
iff D′ |= Q[c̄], for every D′ ∈ Res(D,M). We denote with
ResAn(D,Q,M) the set of resolved answers to Q from D
wrt M . �

Example 10. (example 8 continued) The set of resolved
answers to the query Q1(x, y) : R(x, y) is empty since there
are is no tuple in the intersection of all the extensions of R
in minimal resolved instances. On the other hand, the set
of resolved answers to Q2(x) : ∃yR(x, y) is {〈a1〉}. �

The notion of resolved answer is based on the class of min-
imally resolved instances. It is not difficult to show that this

class can be quite large, actually exponentially large in the
size of the original instance [23]. As a consequence, com-
puting, materializing and querying all the MRIs to do re-
solved query answering should be replaced by more efficient
alternatives whenever possible. This requires a a better un-
derstanding of the intrinsic complexity of resolved query an-
swering. Actually, in Section 4.1 we will investigate the com-
plexity of the problem of computing the resolved answers,
which we now formally introduce, as a decision problem [24].

Definition 8. Given a schema S , a query Q(x̄) ∈ L(S),
and a set M of MDs, the Resolved Answer Problem (RAP)
is the problem of deciding membership of the set

RAQ,M := {(D, ā) | ā is a resolved answer to Q from

instance D wrt M}.
If Q is a boolean query, it is the problem of determining
whether Q is true in all minimal resolved instances of D. �

Notice that here, the set of MDs and the query are fixed,
and the instances for the decision problem are the pairs
formed by a database instance and a potential resolved an-
swer from D. As a consequence, the complexity of the RAP
problem is data complexity, i.e. measured in terms of the
size of instance D [1].

4.1 Computing resolved answers
In this section, we consider the complexity of the problem

RAQ,M just introduced. In this direction, it is useful to
associate a graph with a set of MDs. For this we need to
introduce a few notions first.

Definition 9. A set M of MDs is in standard form if no
two MDs in M have the same expression on the left-hand
side of the arrow. �

Notice that any set M of MDs can be put in standard
form by replacing a subset of M of the form

{R[Ā] ≈ S[B̄] → R[C̄1]
.
= S[Ē1],

. . . ,
R[Ā] ≈ S[B̄] → R[C̄n]

.
= S[Ēn]}

by the single MD

R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē],

where the set of corresponding pairs of attributes of (C̄, Ē)
is the union of those of (C̄1, Ē1), ...(C̄n, Ēn). From now on,
we will assume that all sets of MDs are in standard form.

For an MD m, LHS(m) and RHS(m) denote the sets of
attributes that appear to the left and right of the arrow,
respectively.

Definition 10. Let M be a set of MDs in standard form.
(a) The MD-graph of M , denoted MDG(M), is a directed
graph with a vertex labeled with m for each m ∈ M , and
with an edge from m1 to m2 iff RHS(m1)

⋂
LHS (m2) �= ∅.

(b) A set of MDs whose MD-graph contains edges is called
interacting. Otherwise, it is non-interacting. �

Example 11. Consider the setM of MDs in standard form:

m1 : R[A] ≈ S[B] → R[C]
.
= S[D],

m2 : R[C] ≈ S[D] → R[A]
.
= S[B] ∧R[A]

.
= S[F ]

∧ R[C]
.
= S[E],

m3 : S[E] ≈ S[B] → S[F ]
.
= S[F ].



Its MD-graph is shown in Figure 1. It shows that M is an
interacting set of MDs. �

m1m1 m2 m3

Figure 1: MD-Graph

As a first approach to comparing the tractability of re-
solved query answering for different sets M of MDs, we con-
sider the tractability of retrieving the resolved answers, i.e.
of the decision problem RAQ,M , for a particular class of
conjunctive queries, namely single atom queries. They are
of the form Q(x̄) : ∃ȳR(z̄), where R is a database predicate
of schema S , and x̄ = z̄ � ȳ. If we have intractability for
that class of queries, we will have the same for the broader
class of conjunctive queries.

It is not difficult to verify that, for non-interacting sets of
MDs, the resolved answers to such queries are retrievable in
polynomial time. This follows from the fact that a resolved
instance is obtained by applying the MDs once to the in-
stance. The only values that will be left unchanged after
this update in all MRIs are those that are not part of a set
of duplicates, and, by the minimality condition on MRIs,
those that occur more frequently than any other value in
the set of duplicates to which they belong. The resolved
answers correspond to those tuples such that none of the
values returned by the query can change in an MRI.

We now turn to the simplest case of interacting MDs,
namely a set M of two MDs such that MDG(M) has a single
directed edge from one vertex to the other.

Definition 11. An ordered pair (m1,m2) of MDs is a linear
pair of MDs if MDG({m1,m2}), the MD graph of {m1,m2},
has a single edge, and from m1 to m2. �

Now we will investigate the complexity of RAQ,M when
M is a linear pair of MDs. Actually, as we will show below
(cf. Theorem 3), this problem may become intractable al-
ready for this simple case. In order to obtain this result we
make the assumption that, for all similarity operators, there
exists an infinite set of pairwise dissimilar values. This is
not a strong assumption since attribute domains are usu-
ally infinite. However, this assumption can be weakened by
requiring that a sufficiently large number of dissimilar ele-
ments exist.

For a pair of database instances D and D′, (D,D′) |=
M implies that certain groups of values in D must be set
to a common value in D′. Since all similarity operators
subsume equality, these values in common are also similar
in D′. We call intended similarities those similarities of D′

which hold in D or which are implied by (D,D′) |= M .
Other new similarities can also arise in the updated instance
D′, which we call accidental similarities. These similarities
result from the particular choice of update values, and may
not occur in all D′ satisfying (D,D′) |= M . This latter
kind may unnecessarily enable MDs, complicating the entity
resolution process. As a consequence, distinguishing them
from the intended ones becomes important.

Example 12. Consider the two-attribute predicateR(A,B)
belonging to a schema also containing S(C,D), and the lin-
ear pair (m1, m2) formed by

m1 : R[A] = R[A] → R[B]
.
= R[B],

m2 : R[B] = R[B] → S[C]
.
= S[C].

Consider the following initial extension for R

R A B
t1 a c
t2 a e
t3 b d
t4 b f

The application of m1 might lead to the following updated
instance

R A B
t1 a d
t2 a d
t3 b d
t4 b d

Among the B attribute values, the intended similarities are
t1[B] = t2[B] and t3[B] = t4[B], and the accidental simi-
larities are t1[B] = t3[B], t1[B] = t4[B], t2[B] = t3[B], and
t2[B] = t4[B]. These accidental similarities are also “acci-
dentally” enabling MD m2 for unintended tuples. �

In the case of interacting MDs, accidental similarities are
a source of intractability for the computation of resolved
answers. This is because accidental similarities produced by
the application of one MD affect the application of other
MDs, leading to a dependence on the choices of common
values.

Theorem 3. The RAP problem can be intractable for con-
junctive queries and linear pairs of MDs. More precisely, for
the the query Q(x, z) : ∃yR(x, y, z), and the following set
M of MDs

R[A] ≈ R[A] → R[B]
.
= R[B]

R[B] ≈ R[B] → R[C]
.
= R[C]

RAQ,M is NP-hard. �

In this result, NP-hardness is defined in terms of Turing
(or Cook) reductions as opposed to many-one (or Karp) re-
ductions [24, 26]. This former notion of hardness is weaker or
more general than the latter, in the sense that NP-hardness
under many-one reductions implies NP-hardness under Tur-
ing reductions, but the converse, although widely conjec-
tured not to hold, is an open problem. However, for Turing
reductions, it is still true that there is no efficient algorithm
for an NP-hard problem, unless P = NP .

Our use of Turing reductions also explains theNP-hardness
result, as opposed to co-NP-hardness (based on many-one
reductions) that one usually establishes in cases like this:
A certificate showing that a tuple is not a resolved answer
would be an MRI that does not return the tuple as a usual
answer to the query. Under Turing reductions, the notions
of NP -hardness and co-NP-hardness coincide.

The proof given below employs an oracle machine that
uses an oracle for RAP to decide the satisfiability of a MONO-
TONE 3-SAT formula F . This is used instead of a Karp re-
duction, because there are several different tuples that must



be present in a resolved instance for F to be satisfiable. This
requires several instances of RAP to be decided to determine
satisfiability of F . Each of those tuples is associated with
a clause of F , and the presence of all of them signifies that
there is a way to satisfy all clauses without assigning both
true and false to any variable.

Proof of Theorem 3: The proof is by Turing reduction from
MONOTONE 3-SAT. Given an instance F of MONOTONE
3-SAT with clauses c1, c2,...cn, let D be an instance of R
with tuples t1, t2,...t3n. The sets {t1, t2, t3}, {t4, t5, t6},...
are called 3-blocks. For 0 ≤ i < n, t3i+1[A] = t3i+2[A] =
t3i+3[A] = ki, where the ki are pairwise dissimilar. We refer
to a clause as a positive (negative) clause if it contains only
positive (negative) literals. If ci is a positive clause, then
t3i+1[C] = t3i+2[C] = t3i+3[C] = a. In this case, the set
{t3i+1, t3i+2, t3i+3} is called a positive 3-block. If ci is a
negative clause, then t3i+1[C] = t3i+2[C] = t3i+3[C] = b.
In this case, the set {t3i+1, t3i+2, t3i+3} is called a negative
3-block. The values in the B column consist of a set S of
pairwise dissimilar values, one for each variable in F . The
values of t3i+1[B], t3i+2[B], and t3i+3[B] are the values in S
corresponding to the variables in ci.

In a resolved instance, the B attribute values of all tuples
in a 3-block must be equal (because of the first MD). Mini-
mal change in the B column is achieved by choosing as the
common value any of the original B attribute values in the
3-block. We will show that there is a resolved instance with
this choice of values for the B column and with no change to
the values in the C column iff F is satisfiable. Clearly, this
implies that all MRIs have this form when F is satisfiable.

In a satisfying assignment to F , there is a literal for each
clause in F that is made true by the assignment. In the
first update, for each 3-block in F , choose as the common B
attribute value the value corresponding to the true literal for
a satisfying assignment. Since the assignment is consistent,
the values chosen for the positive 3-blocks are dissimilar to
those chosen for the negative 3-blocks.

In the first update, if a value v is chosen as the common B
attribute value for a positive 3-block, update the C attribute
value for all tuples with v as their B attribute value to a if
it is not already a. Similarly, if a value v is chosen as the
common B attribute value for a negative 3-block, update the
C attribute value for all tuples with v as their B attribute
value to b if it is not already b. All other modifiable values
in the C column can be updated to some arbitrary value.

After the second (and final) update, the C attribute values
of the tuples in each 3-block must be the same. By choice
of first update value for the C column, if there is a tuple in
a positive (negative) 3-block that does not have a (b) as its
C attribute value, then its C attribute value is modifiable
after the first update. By choice of first update value for the
B column, the update value for any modifiable C attribute
value in any tuple in a positive 3-block can be chosen in-
dependently of that for any modifiable C attribute value in
any tuple in a negative 3-block. Choosing the original values
as the update values, there is no change in the C column.

Conversely, suppose there is no satisfying assignment to
F . Then, if a variable is chosen from each clause, there must
be a negative and positive clause such that the same variable
was chosen from them (otherwise F could be made true by
setting the variables chosen from positive clauses true and
setting those chosen from negative clauses false). Suppose

update values are chosen so as to achieve minimal change in
the B column in the first update. Then it must be the case
that, after the second update, values in the C column that
were originally distinct will have been set to a common value.
Specifically, pairs of 3-blocks whose C attribute values were
originally distinct will have had their C attribute values set
to a common value.

To determine whether the instance F is satisfiable, the
oracle Turing machine first constructs instance D. It then
poses the query (D, (ki, a)) to the oracle if ci is positive and
the query (D, (ki, b)) if ci is negative, for 0 ≤ i < n. If the
oracle answers yes in all cases, then the machine accepts.
Otherwise, it rejects. �

It can be seen from the proof of Theorem 3, that the in-
tractability of RAP for the set of MDs in it has its origin in
the possibility of accidental similarities between values for
attribute B. It is the intractability of determining whether
or not accidental similarities can occur between certain val-
ues (which is actually established in the proof of the theo-
rem) that makes the RAP intractable in this case.

Actually, for a set M of MDs like those in Theorem 3,
each of the resolved instances for a given instance D can
be obtained in at most two chase steps (this follows from
Lemma 1 below, and the fact that M has an augmented
MD graph of depth 1). However, we can still have exponen-
tially many resolved instances: the total number of different
choices of update values for all the sets of duplicate values
taken together may be exponential.

The sources of complexity are then, the possibly expo-
nential number of (minimally) resolved instances, and the
minimality test. Actually, the latter is the main source: If
RAP were defined on the basis of the resolved -not neces-
sarily minimal- instances, it would be tractable for the MDs
considered. This is because all we need to know are the sets
of duplicate values and the possible update values for each
set. Actually, the minimality as a source of complexity is
also reflected in the fact that deciding the minimality of a
resolved instance is NP -hard. This follows from the proof
of Theorem 3.

In Theorem 3, the chosen query is also relevant for the
intractability, because it returns values for an attribute that
is updated more than once (R[C] in that case). Updates
on those values are affected by the accidental similarities
generated during the previous update.

For some cases of linear pairs, resolved query answering is
tractable in spite of the occurrence of accidental similarities.
This happens when the interaction between the MDs is more
restricted in the sense that accidental similarities generated
by one MD cannot affect the application of the other MD.

Example 13. For the set of MDs

R[A] ≈ R[A] → R[B]
.
= R[B]

R[A] ≈ R[A] ∧R[B] ≈ R[B] → R[C]
.
= R[C],

the resolved answers to any single-atom query involving pred-
icate R can be retrieved in polynomial time, making RAP
tractable for those queries.

Intuitively, the conjunct R[A] ≈ R[A] in the second MD
“filters out” the accidental similarities among the values of
attributes in the B column, allowing only the intended sim-
ilarities to be passed on to the C column by the second MD.
�



More generally, the following can be proved.

Theorem 4. For any pair (m1,m2) of linear MDs of the
form

m1 : R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē]

m2 : R[Ā] ≈ S[B̄] ∧R[C̄] ≈ S[Ē] → R[H̄]
.
= S[Ī ]

the resolved answers to any single-atom query are retrievable
in polynomial time.

Proof: The given set of MDs has the same MRIs as the MD

m′ : R[Ā] ≈ S[B̄] → R[C̄]
.
= S[Ē] ∧ R[H̄]

.
= S[Ī ]

which obviously satisfies the theorem. To see this, notice
that no tuple t1 ∈ R (S) can have its values for the attributes
in RHS(m1) or RHS(m2) updated by application of m1 and
m2 if there is no tuple t2 ∈ S (R) such that t1[Ā] ≈ t2[B̄]
(t2[Ā] ≈ t1[B̄]). On the other hand, in all updates subse-
quent to the first, any pair of tuples satisfying R[Ā] ≈ S[B̄]
must have their values matched according to R[C̄]

.
= S[Ē]

and R[H̄ ]
.
= S[Ī]. �

This result can be extended to a broader class of con-
junctive queries by means of a query rewriting methodology
[23].

4.2 A general upper bound
In this section, we show that, for certain classes of MDs

and arbitrary queries that are evaluable in polynomial time,
the time complexity of RAP is bounded above by the second
level of the polynomial hierarchy [27].

The sets of MDs we consider satisfy a restriction that
guarantees that the update process will terminate after a
number of steps that does not depend on the size of the
data. To express this restriction, we require an extension of
MD-graphs which we call augmented MD-graphs.

Definition 12. Let M be a set of MDs on schema S .
(a) The symmetric binary relation

.
=r relates attributesR[A],

S[B] of S whenever there is an MD m in M where R[A]
.
=

S[B] appears to the right of the arrow of m.
(b) The attribute closure of M is the reflexive and transitive
closure of

.
=r.

(c) ER[A] denotes the equivalence class of attribute R[A] in
the attribute closure of M . �

Definition 13. Let M be a set of MDs in standard form.
The augmented MD-graph of M , denoted AMDG(M), is a
directed graph with a vertex labeled withm for eachm ∈ M ,
and with an edge from m to m′ iff there is an attribute, say
R[A], with R[A] ∈ RHS(m) and ER[A] ∩ LHS(m′) �= ∅. �

Example 14. (example 11 continued) The set of MDs has
the augmented MD-graph shown in Figure 2. It must have
all the edges in the original MD-graph has. In addition, it
has an edge from m1 to m3, because S[C] ∈ ER[C]; and also
an edge from m3 to m1, because R[A] ∈ ES[F ]. �

Lemma 1. Let M be a set of MDs on schema S such that
AMDG(M) is a directed acyclic graph (DAG). Let D be an
instance for schema S . Then, any sequence of updates to
D according to M (and consistent with Definition 4) ter-
minates with a resolved instance after at most d + 1 steps,
where d is the maximum length of a path in AMDG(M).

m1m1 m2 m3

Figure 2: Augmented MD-Graph

Proof: Define the depth of an equivalence class E of the at-
tribute closure ofM as the maximum length of a path ending
in an MD m with an element of E in RHS(m).

Let A be an attribute such that the depth of EA is d.
We show by induction on the depth that no value of A for
instance D can change after d+ 1 updates.

Let MEA denote the set of MDs m such that there is an
attribute of EA in RHS(m). In the d = 0 case, all m ∈ MEA

satisfy the property that the values of attributes in LHS(m)
are always unmodifiable. The only way that a value of A
can be modifiable is if there is a pair of tuples t1 and t2
that satisfy the condition of an MD m and a pair of (not
necessarily distinct) attributes B,C ∈ EA such that B

.
= C

is a corresponding pair of m and t1[B] is unequal to t2[C].
However, this cannot happen after the first update, since
the values of all attributes in LHS(m) are unmodifiable.

Suppose the statement is true for d < k. Let A be an
attribute such that the depth of EA is k. Then, all m ∈
MEA satisfy the property that the values of all attributes of
LHS(m) are unmodifiable after the kth update. A similar
argument to that used for the d = 0 case shows that the
values of A are not modifiable after the (k + 1)th update.
The lemma follows. �

We now state the main result of this section. For it, we
will make the assumption that, during the update process,
any string introduced into an instance from outside the ac-
tive domain is bounded in length by a fixed polynomial in
the maximum length of the values in the active domain. It is
reasonable to make this bounded length assumption in prac-
tice, because duplicates would never be replaced by a value
that differed widely from them in length.

Theorem 5. Let M be a set of MDs such that AMDG(M)
is a DAG. For any polynomial time evaluable query Q, the
decision problem RAQ,M is in ΠP

2 .

Proof: The problem is decidable in polynomial time by an
alternating Turing machine T that undergoes a universal
phase followed by an existential phase. Let (D, ā) be the
input to T . In the universal phase, T produces a resolved
instance D′ by applying the MDs to D, guessing the up-
date values at each step. It then poses Q to D. If ā is in
the answer, T accepts. Otherwise, T enters an existential
phase, and produces a resolved instance D′′ as in the uni-
versal phase. If D′′ has fewer changes than D′, T accepts.
Otherwise T rejects. The polynomial runtime is guaranteed
by Lemma 1 and the bounded length assumption. �

Notice that this result can be applied to FO queries and
Datalog queries, including those with stratified negation [1].



5. CONCLUSIONS
In this paper we have proposed a revised semantics for

matching dependency (MD) satisfaction wrt the one origi-
nally proposed in [18]. On this basis we defined the notions
of minimally resolved instance (MRI) and resolved answers
(RAs) to queries. The former capture the intended, clean
instances obtained after enforcing the MDs on a given in-
stance. The latter are query answers that persist across all
the MRIs, and can be considered as robust and semanti-
cally correct answers. We investigated the new semantics,
the MRIs and the RAs. In particular, we established the
existence of MRIs.

We undertook the first steps in the investigation of the
complexity of computing the RAs, and derived some first
results in this direction. We showed that the problem may
be intractable for simple cases of queries and MDs. How-
ever, we identified some non-trivial cases where tractability
is guaranteed.

In our ongoing work [23], we are deriving syntactic crite-
ria on MDs for identifying what we called easy and hard sets
of MDs. We are also developing, in the easy cases, query
rewriting methods for obtaining the RAs to much more gen-
eral conjunctive queries than those considered in this paper.

We are also investigating the possibility of specifying the
minimally resolved instances, and doing resolved query an-
swering, by means of answer set programs (ASPs) [25, 13]
with weak constraints [14]. The latter are used to impose the
minimality condition on value changes on the stable models
of the ASP that represent the minimally resolved instances.

ASPs have already been proposed for ER under MDs and
matching functions (MFs) that are applied when merging
two values [3]. The MFs are assumed to be idempotent, com-
mutativity and associative, which always guarantees chase
termination [10, 11], and then, finite stable models for the
ASPs. In our case, we do not have that guarantee (cf. Ex-
ample 7). As a consequence, ASP specifications should be
possible when all chase sequences terminate, e.g. under the
conditions of Lemma 1. Ongoing work addresses the identi-
fication of other cases of syntactic conditions on MDs that
guarantee termination for every chase sequence.

The semantics of MDs in this paper is dynamic in the sense
that it involves an update operation. Edit rules for master
data is another area of data cleaning research in which a
dynamic semantics has been proposed [19]. In contrast to
duplicate resolution, which prescribes matchings of values
without specifying the update value, edit rules require that
a value be updated to a specific value contained in master
data. Another difference is that with edit rules, updates to
a tuple t are done on the basis of equality of values in t with
values in master data, and these values of t are assumed to
be certain and cannot change. With MDs, the values on the
basis of which a matching was made are allowed to change
as a result of subsequent updates. Indeed, this can happen
whenever we have interacting MDs.

In this paper we have not considered cases where the
matchings of attribute values, whenever prescribed by the
MDs’ conditions, are made according to matching functions
[10, 11, 3]. This element adds an entirely new dimension to
the semantics and the problems investigated here. It cer-
tainly deserves investigation.
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