
BIROn - Birkbeck Institutional Research Online

Zhou, Y. and Zhou, N. and Han, Tingting and Gu, J. and Wu, W. (2018)
Probabilistic verification of hierarchical leader election protocols in dynamic
systems. Frontiers of Computer Science 12 (4), pp. 763-776. ISSN 2095-
2228.

Downloaded from: https://eprints.bbk.ac.uk/id/eprint/19777/

Usage Guidelines:
Please refer to usage guidelines at https://eprints.bbk.ac.uk/policies.html or alternatively
contact lib-eprints@bbk.ac.uk.

https://eprints.bbk.ac.uk/id/eprint/19777/
https://eprints.bbk.ac.uk/policies.html
mailto:lib-eprints@bbk.ac.uk

Front.Comput.Sci.
DOI

RESEARCH ARTICLE

Probabilistic Verification of Hierarchical Leader Election Protocol
in Dynamic Systems

Yu Zhou 1, Nvqi Zhou 1, Tingting Han 2, Jiayi Gu 1, Weigang Wu 3

1 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, 210016, China
2 Department of Computer Science and Information Systems, Birkbeck, University of London, UK

3 Department of Computer Science, Sun Yat-sen University, 510006, Guangzhou, China

c© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Abstract Leader election protocols are fundamental for
coordination problems—such as consensus—in distributed
computing. Recently, hierarchical leader election protocol-
s have been proposed for dynamic systems where processes
can dynamically join and leave, and no process has global in-
formation. However, quantitative analysis of such protocols
is generally lacking. In this paper, we present a probabilistic
model checking based approach to verify quantitative prop-
erties of these protocols. Particularly, we employ the compo-
sitional technique in the style of assume-guarantee reasoning
such that the sub-protocols for each of the two layers are ver-
ified separately and the correctness of the whole protocol is
guaranteed by the assume-guarantee rules. Moreover, with-
in this framework we also augment the proposed model with
additional features such as rewards. This allows the analysis
of time or energy consumption of the protocol. Experiments
have been conducted to demonstrate the effectiveness of our
approach.

Keywords distributed computing, hierarchical leader elec-
tion protocol, dynamic systems, probabilistic model checking

1 Introduction

Eventual leader election protocols are fundamental to solve
coordination related problems in distributed computing [1].
Generally speaking, in the leader election problem, there are
n processes in the system, each of which has a unique i-
dentity. Upon termination of the protocol, exactly one pro-

Received month dd, yyyy; accepted month dd, yyyy

E-mail: zhouyu@nuaa.edu.cn

cess announces itself as the leader [2]. A number of lead-
er election protocols have been designed for various kinds
of settings [3–5]. Recently, with the rapid development of
networking technology, dynamic systems are becoming in-
creasingly popular. Different from the traditional assumption
made in the static system, in dynamic systems, processes can
dynamically join and leave the system, and no process has the
global information on the whole [6]. Indeed, many applica-
tions exhibit the features of the dynamic system, and typical
examples include Peer-to-Peer systems, Internet-of-Things
systems, etc. Therefore, eventual leader election in dynam-
ic systems has been intensively studied in the literature [7–9].
The main challenge here is the inherent uncertainty of the un-
derlying dynamic models. This uncertainty, not only brings
difficulty to the protocol design, but also to the (quantitative)
analysis of the proposed protocols. Indeed, in [9], we gave a
theoretical proof of the protocol’s correctness. However, such
correctness cannot answer questions such as how many steps
are needed, or how much energy is consumed, to elect a glob-
al leader on average. Such quantitative analysis is evidently
of great interest to the end users of the protocol.

Model checking turns out to be an effective formal method
to verify a design artifact against certain properties, i.e.,
checking whether a design is a model of the specification.
Normally, the design model is expressed as a labeled tran-
sition system and the property is written in temporal logics.
Because the verification is conducted automatically and ex-
haustively, and a counterexample can be provided when the
specification is unsatisfied, model checking has been wide-
ly applied in practice [10]. However, conventional model
checking techniques can only give a yes or no answer to the

2
Probabilistic Verification of Hierarchical Leader Election Protocols in Dynamic Systems

properties in question — it cannot analyze systems which ex-
hibit probabilistic behavior in a satisfactory way. Probabilis-
tic model checking generalizes conventional model check-
ing in that it builds and analyzes probabilistic models such
as Markov chains and Markov decision processes [11]. By
leveraging probabilistic extensions of temporal logics, the
quantitative properties of these models can be specified or
verified automatically.

In light of these considerations, we adopt probabilistic
model checking to quantitatively verify properties — relat-
ed to the scalability and efficiency issues — of a hierarchical
leader election protocol for dynamic systems which was re-
cently proposed in the literature [9]. Particularly, we lever-
age the PRISM model checker [12] to construct the hierar-
chical model. PRISM is a leading open-source model check-
er and has been applied in many fields, such as communica-
tion protocols, distributed algorithms and some other systems
of specific subjects like biology. The paper is based on our
previous work on the design of hierarchical eventual leader
election protocols for dynamic systems [9] and probabilistic
analysis of regular leader election protocols without cluster
hierarchies [13]. In this paper, we make the following contri-
butions:

1. We complement the analysis of our model proposed
in [9] with quantitative verification via probabilistic
model checking. To our best knowledge, this is the first
case study of applying probabilistic verification on a hi-
erarchical eventual leader election protocol. The ver-
ification gives deeper insights on the properties of the
protocol.

2. We adopt a compositional reasoning technique, i.e.,
assume-guarantee, to verify hierarchical protocol de-
sign, which gives better scalability compared to the
holistic approach.

3. We extended the original protocol model in two aspects.
Firstly, we employ cost/rewards to model energy con-
sumption; secondly, we relax the assumption of reliable
communication. For both aspects, we use probabilistic
model checking to conduct quantitative analysis.

Moreover, as a minor contribution, we develop some tech-
niques to increase the expressiveness of PRISM model check-
er and an automated code generation technique to increase the
scales of models. These techniques can be reused as a library
for other similar problems. The rest of the paper is structured
as follows: Section 2 briefly introduces the hierarchical lead-
er election protocol in dynamic systems. The detailed model
design of the protocol is described in Section 3 followed by

the probabilistic verification in Section 4. Some discussions
and related work are given in Section 5 and Section 6 respec-
tively. Section 7 concludes our paper.

2 Hierarchical Leader Election Protocol in a
Nutshell

In this section, we first briefly introduce the hierarchical de-
sign of the protocol and assumptions of the model. We then
present some essential parts of the protocol. The details of
the protocol can be found in [9].

The hierarchical leader election protocol is designed for
the cluster based hierarchy topology, which has been widely
used in many fields such as consensus [14] and information
dissemination [9, 15]. Generally, the hierarchical election of
an eventual leader is achieved in two steps. In the fist step,
election is conducted to select a cluster head within a clus-
ter. In the second step, the election is conducted among clus-
ter heads which have been done in the first step to select the
globally unique leader. Correspondingly, the protocol con-
sists of two layers, i.e., the lower layer and the upper layer.
In the lower layer, cluster heads are elected with each clus-
ter, and then in the upper layer, election is conducted among
cluster heads so as to elect the eventual leader of the whole
system. Both layers adopt the query-response communica-
tion primitives suited to the dynamic system. In a nutshell,
there are two communication primitives: broadcast and wait
until. The former is used to broadcast a query message to all
of the processes; the latter stipulates that the process waits un-
til a pre-defined number α of responses have been received.
Here, α defines the minimal number of stable processes; a
process is stable if it never leaves a cluster after joining the
cluster. It captures the progress requirement of the dynamic
system [6], and normally we assume α > bn/2c+1. The com-
munication channel is assumed to be reliable in the original
work for simplicity [9], but we shall relax this assumption to
a more realistic setting during the quantitative verification in
our model.

The election protocol in the lower layer is enacted within
each individual cluster and the purpose is to select the head
of the corresponding cluster. The upper layer protocol stands
on the whole system and its task is to guarantee a unique
leader of the system to be elected. In short, the protocol runs
sequentially: the cluster head is elected in the lower layer,
and then the eventual leader is elected among those cluster
heads in the upper layer.
Lower layer protocol. The original protocol in this layer

Front. Comput. Sci.
3

consists of four tasks, i.e., Task 1, Task 2, Task 3 and Task 4.
These four tasks are executed independently by the processes
in the lower layer. These tasks are interacted and synchro-
nized through message exchanges. Among them, Task 1 is
the core of the protocol. It is used for processes to exchange
information and update cluster-head candidates. The main
purpose is to reduce the size of the candidate head set de-
noted by trusti and to ensure a unique cluster head is elected
eventually.

begin
Init: rec_ f romi = Π; log_datei = 0;
trusti = Π; leaderi = i; CH = i;
reci = Π; seqnumi = 0; accepti = Π;
while true do

broadcast QUERY(i) to the whole cluster;
wait until RESPONSE(j,rec_ f rom j) received from α
processes;
RECFROMi = the union of rec_ f rom of those senders;
trusti = trusti ∩ RECFROMi;
rec_ f romi = the set of the senders which send RESPONSE;
if trusti is modified then

broadcast TRUST(trusti,log_datei) to the whole
system;

end
end

end

Algorithm 1: Lower layer protocol: Task 1 (main task)

The data structures used in the lower layer protocol are
listed as follows:

• Π is the full set of processes;
• rec_ f romi is the set of processes from which process pi

receives a RESPONSE message;
• trusti is the candidate cluster head set;
• log_datei is the logical time which defines the age of

trusti;
• leaderi is the current global leader process;
• CHi is the local cluster head of process pi;
• RECFROMi is the union set of rec_ f rom

Algorithm 1 illustrates these data structures and their ini-
tialization. In Task 1, firstly, pi sends a QUERY message
and then keeps waiting until α RESPONSE messages have
been received. Next, it updates its rec_ f romi set based on
the identities of those processes which have sent RESPONSE
messages. After that it adjusts RECFROMi set by computing
the union of the rec_ f rom of all above the processes appear-
ing in rec_ f romi. Afterwards, trusti is modified by set inter-
section. If the value of trusti is changed, then pi broadcasts
another message containing the TRUST set to the whole clus-
ter so that all processes in the cluster can adjust their leader
information accordingly.

Task 2 shown in Algorithm 2 is to ask a process to send a
RESPONSE message immediately after it receives a QUERY
message from other processes. We note that, in the original
protocol, it is assumed that the channel for message delivery
is reliable and thus no message could lost. This is, howev-
er, an unrealistic assumption in the real networking environ-
ment. To remedy this, we introduce a parameter ratio_suc to
represent the probability of successfully sending messages.

begin
upon QUERY(i) is received from pi ratio_suc: send
RESPONSE(j, rec_ f rom j) to pi;

end

Algorithm 2: Lower layer protocol: Task 2 (send back
RESPONSE)

Task 3 is designed to modify the trust set by comparing
to log_datei when receiving the TRUST messages. At the
same time, this task can also monitor the trust set and reset
it if it is empty. Algorithm 3 illustrates Task 3. Once pi re-
ceives a TRUST message from process p j, it should adjust
its trusti set accordingly. Task 4 is illustrated in Algorithm 4
and is used to update the cluster head of a process when it has
finished executing Task 3, i.e., the process with the smallest
identity in the candidate set will be announced as the cluster
head.

begin
upon TRUST(trusti, log_datei) is received from pi if
log_datei == log_date j then

trust j = trust j ∩ trusti;
end
if log_datei > log_date j then

trust j = trusti;
log_date j = log_datei;

end
if trust j == ∅ then

trust j = Π; log_date j = log_date j + 1;
end

end

Algorithm 3: Lower layer protocol: Task 3 (update trust
set)

begin
if trusti == ∅ or trusti == Π then

CHi = i;
else

CHi = min(trusti);
end

end

Algorithm 4: Lower layer protocol: Task 4 (determine
the cluster head)

Upper layer protocol. The upper layer of this hierarchy-
based leader election protocol is to elect a global leader of

4
Probabilistic Verification of Hierarchical Leader Election Protocols in Dynamic Systems

the whole system among all cluster heads which have been
elected in the lower layer. The following data structures are
used:

• accepti is the set of candidate leaders; seqnumi is a log-
ical time which defined the age of accepti;

• reci is the set of (Ck, k) from which pi received a RES
message;

• CLUSTERi is the union set of Ck

Two messages are used to exchange information.
ALIVE(Ci, i, accepti, seqnumi) is a message to gossip
with other cluster heads, and RES(Ck, k, reck) is the response
message of ALIVE.

In this layer, there are three important tasks to elect a glob-
al leader for the whole system, i.e., Task 1, Task 2, and Task
3. Among them, Task 1 is the main body of the protocol
which decreases the number of the candidate leaders of the
system via continuously updating the leader set. Task 2 is
an auxiliary task dealing with the condition where a cluster
head receives the ALIVE message. Task 3 is similar to its
counterpart in the lower layer targeting at updating the lead-
er set. The above three tasks are shown with pseudo-code in
Algorithm 5-7.

begin
while true do

if pi is the head of a cluster Ci then
broadcast ALIVE(Ci, i, accepti, seqnumi) to the whole
system;
wait until enough RES(Ck , k, reck) having been
received from (n-f) clusters;
reci = the set of the senders which send RES firstly in
their own clusters;
Let CLUS T ERi = the union of rec of those senders;
accepti = accepti ∩CLUS T ERi;
if cluster j has more than one leaders then

accepti = accepti - { j};
end

end
end

end

Algorithm 5: Upper layer protocol: Task 1 (main task)

Algorithm 5 illustrates Task 1 of the upper layer protocol.
At first, cluster head pi broadcasts an ALIVE message to all
cluster heads in the system, and keeps waiting until (n − f)
RES messages from different clusters received, in which n is
the number of clusters and f is the number of empty clusters
where there are no processes. Next, pi records the ids of
each cluster head and sends the values to reci. After that,
CLUSTERi is updated by computing the union of rec set of
cluster heads appearing in reci. Then, accepti is intersected
with the above CLUSTERi. Eventually, pi checks its accepti

to test whether or not a cluster has more than one cluster head
and then deletes the ids of those clusters.

begin
upon ALIVE(Ci, i, accepti, seqnumi) is received from pi
if seqnumi == seqnum j then

accept j = accept j ∩ accepti;
else if seqnumi > seqnum j then

accept j = accepti; seqnum j = seqnumi;
if accept j == ∅ then

accept j = Π; seqnum j = seqnumi+1;
end
if Ci == C j&& j! = i then

accept j = accept j − {C j};
else

send RES(C j, j, rec j) to Π;
end

end

Algorithm 6: Upper layer protocol: Task 2 (update ac-
cept and send RES back)

Algorithm 6 illustrates Task 2 of the upper layer. In the first
place, when p j, the head of cluster C j, receives an ALIVE
message from pi, p j modifies its value after comparing the se-
qnum values of two cluster heads. Next, p j checks its accept j

value to decide whether or not it is empty. If there is no el-
ement in this set, p j resets accept j with all elements. And
then, p j will check whether this message is sent from other
processes within the same cluster. If it is true, p j will update
the accepti by removing its cluster id; otherwise, it will send
a RES message.

begin
if accepti == null then

leaderi = i;
else

leaderi = the cluster head of min(accepti);
end

end

Algorithm 7: Upper layer protocol: Task 3 (determine
the leader)

Task 3 of the upper layer protocol finishes the election.
This task targets at electing the global leader of the whole
system. When pi finishes a cycle of the operation, it imme-
diately updates its leader information according to the value
of accepti. This task is similar to the Task 4 of the lower lay-
er protocol. The above tasks constitutes the essential steps
of the two layer eventual leader election protocol. We refer
interested readers to [9] for details.

3 Model of the Protocol

In this section, we give the modeling of the protocol pre-
sented in the previous section using PRISM. We assume that

Front. Comput. Sci.
5

readers are familiar with the syntax and features of the PRIS-
M modeling language, for which unfamiliar readers can refer
to [12]. PRISM uses a state based language to construct the
models, and in this way, it has a natural correspondence to
the labeled transition system during model checking. The
paradigm of the state based modeling language is quite dif-
ferent from the imperative language we used to describe our
protocol. Therefore, the construction of the corresponding
PRISM model is not straightforward. On the other hand, as
we can see, the hierarchical protocol contains seven tasks in
total and if we faithfully modeled the protocol, there would
be too many intermediate states obstructing efficient verifica-
tion seriously. Thus we need to abstract some unnecessary
details away in the model design process. Concretely speak-
ing, we change the way of constructing the RECFROM set
and simplify the way of dealing with TRUST message.

(1) Constructing the RECFROM. In this part, we show how
to reconstruct the RECFROM set via a simple way with-
out changing the essence of the original protocol. From
lower layer Task 1, we observe that RECFROM is a u-
nion of the rec_ f rom sets of α processes having sent
RESPONSE messages. These α rec_ f rom sets contain
ids of the α processes. Based on this, we can redesign
some steps of the original protocol. During the period
of computing rec_ f rom set, we only need to focus on
the size of the set rec_ f rom which is always α — the
elements of rec_ f rom are irrelevant. Note that here, it
should be guaranteed that α ≥ bn/2c + 1. Therefore,
when the cluster has n processes, there are

(
n
α

)
different

possibilities of selecting α processes from such a cluster.
In addition, we should pay attention to the construction
of RECFROM set. It consists of α rec_ f rom each con-
taining α different elements, and thus the total number is
α2. However, some of these identities are duplicate, and
thus the number of non-redundant elements in this set
is between α and n. Since there is no difference among
processes, for each configuration of RECFROM set, we
can use one instance to represent. There are n − α + 1
such configurations.

(2) Simplifying the way of dealing with the TRUST mes-
sage. When trusti is changed, process pi immediately
broadcasts a TRUST message to other processes in the
same cluster to update their own trust sets. Then the
related processes compare the value of log_datei and re-
acts accordingly. Because in the same cluster, all pro-
cesses are executing in parallel, the change of log_date
information is totally stochastic, and thus we use the

nondeterminism provided by PRISM to model it and s-
elect one of three operations randomly.

The original protocol [9] has an eventual cluster stability
assumption, which states that eventually at most f out of all n
clusters are empty, and at most s of the clusters are not emp-
ty but with less than α members. It requires that after some
time, a stable cluster has no more process joining. Accord-
ingly, in our model, we did not consider the processes joining
and leaving across different clusters and only considered the
situations in stable clusters.

Below we present the modeling of the two layer’s protocol.
Lower layer model. First of all, we introduce some vari-
ables to model the lower layer protocol. Their definitions and
(intuitive) semantic explanations are summarized in Table 1.

As defined in Task 1 of the lower layer protocol, process
pi broadcasts a QUERY message in its cluster. After that,
pi needs to update its state. In our model, we use the flag
variable QUERYi to label the state and set its value to be
true after the transition. Without loss of generality, we use
p1 as the representative process in the examples of PRISM
code throughout the paper. The corresponding PRISM model
snippet is given in Listing 1.

Table 1 Variable definition and explanations in lower layer
Variable Semantics

leaderi:[1..n] init 1 the leader of pi’s cluster,
initial value is its id

QUERYi:bool init false the flag mark of pi’s QUERY,
initial value is false

Ri j :bool init true the jth value of pi’s trust set,
initial value is true

TRUSTi:bool init false the listener of pi’s TRUST set,
initial value is false

si: init 0; the current step of pi’s execution,
initial value is 0

Listing 1 Broadcasting a query

[] (s1 =0)&(QUERY1= f a l s e)−>(s1 ’=1)&(QUERY1’= t r u e) ;

Afterwards pi receives a collection of responses
RECFROM, whose contents are identities of peer pro-
cesses. As discussed previously, the range of RECFROM is
between α and n. So we can adjust the value of Ri j to denote
whether the process p j is included in the response messages.
This is exemplified in Listing 2.

Listing 2 Broadcasting a query

[] (s1 =1)&(QUERY1= t r u e)−> r1 : (s1 ’=2)
+ r2 : (s1 ’=2)&(R1_1 ’= f a l s e)
+ r3 : (s1 ’=2)&(R1_1 ’= f a l s e&R1_2 ’= f a l s e)
+ r4 : (s1 ’=2)&(R1_1 ’= f a l s e&R1_2 ’= f a l s e&R1_3 ’= f a l s e)
+ . . .

6
Probabilistic Verification of Hierarchical Leader Election Protocols in Dynamic Systems

Once getting the set of RECFROM, we need to decide
whether or not pi broadcasts the TRUST message to all pro-
cesses within the same cluster after updating trust. In our
model, we compare RECFROM and trust. If they are the
same, then it means the trust set will not be updated and nei-
ther will the update message be broadcast. This step is illus-
trated in Listing 3. In the example code of this step, n denotes
the number of processes involved in the election and t1_i rep-
resents the element of TRUST set.

Listing 3 Comparison between RECFROM and trust

[] (s1 =2)−>(s1 ’=3)&(TRUST1’= (R1_1= t 1_1 ? f a l s e : t r u e)
| (R1_2= t 1_2 ? f a l s e : t r u e) | . . . | (R1_n= t 1_n ? f a l s e : t r u e)) ;

If pi receives the TRUST message sent from other pro-
cesses, it will execute the corresponding operations and up-
dates its trust set. Different from previous steps, it requires
synchronization with other processes, i.e., upon receiving the
TRUST message, all processes need to stay synchronized.
Therefore, we use a variable A1 to denote this. The PRIS-
M code snippet is explained in Listing 4.

After this step, we proceed to update the trust set and
QUERY. If the set is empty, then we reset it with its initial
value. QUERY is set to be false so as to enable the repetition.
This is illustrated in Listing 5.

Listing 4 Synchronizing the processes

/ / p r o c e s s p1
[A1] (s1 =4)&(TRUST1= t r u e)−>(s1 ’=5)&(TRUST1’= f a l s e) ;

/ / p r o c e s s p2 , . . . , pn
[A1] (s1 =4)&(TRUST1= t r u e)−>

1 / 3 : (s2 ’=5)&(t2_1 ’= t 2_1&t1_1)
& . . . & (t2_n ’= t 2_n&t1_n)
+ 1 / 3 : (s2 ’=5)&(t2_1 ’= t 1_1) & . . . & (t2_n ’= t 1_n)
+ 1 / 3 : (s2 ’ = 5) ;

Listing 5 Resetting the trust set and query

[] (s1 =5)&(t1_1= f a l s e) & . . . & (t1_n= f a l s e)−>(t1_1 ’= t r u e)
& . . . & (t1_n ’= t r u e)&(s1 ’ = 6) ;

[] (s1 =5)&!((t 1_1= f a l s e) & . . . & (t1_n= f a l s e))−>(s1 ’ = 6) ;
[] (s1 =6)−>(QUERY’= f a l s e)&(s1 ’ = 0) ;

In order to select a leader of a certain cluster in the low-
er layer, we set up a listener globally to update the leader
information of each involved process. When the QUERY in-
formation is updated, it will trigger the listener. Therefore,
we use the synchronization utility in PRISM to implement
the listener as illustrated in Listing 6.

Listing 6 Resetting the trust set and query

[A2] (s1 =6)−>(l e a d e r 1 ’= (t 1_1= t r u e ? 1 :
(t 1_2= t r u e ? 2 : (. . . (t 1 _ (n−1)= t r u e ? (n −1) : n))))) ;

[A2] (s1 =6)−>(QUERY’= f a l s e)&(s1 ’ = 0) ;

Upper layer model. Similarly, we first introduce addi-
tional variables defined to facilitate the model design, and
then we present the essential steps for the upper layer pro-
tocol. We also use p1 as an example. p1 has a variable,
i.e., Leader1, to record the head information of its cluster, a
Boolean variable ALIVE1 to denote whether it has broadcast
the ALIVE message to all cluster heads within the system.

The sets of accept and CLUS T ER are the same as defined
in the upper layer protocol. These variables and explanations
are given in Table 2. The number of cluster heads are denoted
as a variable m.

Table 2 Variable definitions and explanations in upper layer
Variable Semantics

Leader1:[0..m] init 1 the leader of p1’s cluster,
initial value is its id

ALIVE1:bool init false the boolean flag mark of pi , whether or not
pi sends an alive message, initialized false

accept1 j:[0..1] init 1 the jth value of p1’s accept set,
initial value is 0

s1: init 0 the current step of pi’s execution,
initial value is 0

Firstly, p1 needs to broadcast an ALIVE message to all
processes within the system. we model this step and change
its states afterwards as illustrated in Listing 7.

Listing 7 Broadcasting an ALIVE message

[] (s1 =0)&(ALIVE1= f a l s e)−>(s1 ’=1)&(ALIVE1’= t r u e) ;

After sending the ALIVE message, p1 and other processes
need to synchronize their reactions accordingly. For p1, it
just transfers to the next state; while for other processes, they
need to start Task 2 of the upper layer protocol to handle the
ALIVE2 message. In the Listing 8, we use process p2 as a
representative of other processes. The r1, r2 and r3 are the
probability coefficients. The sum of the three values should
be equal to 1.

Listing 8 Handling the ALIVE message

/ / For p1 ;
[a l i] (s1 =1)&(ALIVE1= t r u e)−>(s1 ’ = 2) ;
. . .
/ / For o t h e r p r o c e s s e s , e . g . p2 ;
[a l i] (s1 =1)&(a l i v e 1 = t r u e)−>

r1 : (accep t2_1 ’= (a c c e p t 2 _ 1=a c c e p t 1 _ 1) ? a c c e p t 2 _ 1 : 0) & . . .
&(accept2_m ’= (accept2_m=accept1_m) ? accept2_m : 0)
&(s2 ’=2)+ r2 : (accep t2_1 ’= a c c e p t 1 _ 1) & . . .
&(accept2_m ’= accept1_m)&(s2 ’=2)+ r3 : (s2 ’ = 2) ;

When p1 finishes the above operation, it will check the
emptiness of its accept set. If the set is empty, it will reset
with its initial value. Otherwise, it will move to the next state.
This step is illustrated in Listing 9.

Listing 9 Resetting the accept set

[s] (s1 =2)&(a c c e p t 1 _ 1 =0) & . . . & (accept1_m =0)−>

(a c c e p t 1 _ 1 =1) & . . . & (a c c e p t 1 _ 6 =1)&(s1 ’ = 3) ;
[s] (s1 =2)&!((a c c e p t 1 _ 1 =0)&(a c c e p t 1 _ 2 =0)

& . . . & (acccept1_m =0))−>(s1 ’ = 3) ;

Listing 10 Calculating the CLUS T ER set

[] (s1 =4)−>(s1 ’=5)&(accep t1_1 ’=
(a c c e p t 1 _ 1=1& c l u s t e r 1 _ 1 =1)? a c c e p t 1 _ 1 : 0)
& . . . & (accept1_m ’= (accept1_m=1
&c l u s t e r 1 _ m =1)? accept1_m : 0) ;

Front. Comput. Sci.
7

Process p1 will get a CLUSTER set after broadcasting the
ALIVE message. We use the similar strategy of calculating
RECFROM in the lower layer protocol to get CLUSTER. The
code snippet is given in Listing 10.

The above steps constitute the essential parts of the up-
per layer leader election model. However, we also need an
external listener to update the leader information after each
election cycle. This step is similar to the one in the lower lay-
er protocol and is illustrated in Listing 11, where m denotes
the number of cluster heads participating the upper layer elec-
tion.

Listing 11 Calculating the CLUS T ER set

[A2] (s1 =5)−>(Leader1 ’= (a c c e p t 1 _ 1=0&a c c e p t 1 _ 2 =0
&. . .& accept1_m = 0) ? 1 : (a c c e p t 1 _ 1 =1?1:
(a c c e p t 1 _ 2 = 1 ? 2 : . . . (a c c e p t 1 _ (m−1)=1?(m−1) :m) . . .))) ;

4 Probabilistic Verification

4.1 Assume-guarantee based compositional reasoning

Assume-guarantee verification is a frequently used technique
in compositional reasoning. It can be used to verify the sys-
tem S , which consists of the parallel composition of two sub-
systems S 1 and S 2, written as S 1||S 2, against certain property
G, written as <true>S 1||S 2<G>. In order to verify this asser-
tion, it is reduced to verify whether or not the two assertions
<true>S 1<A> and <A>S 2<G> hold, where A is the assump-
tion and G is the guarantee. Assume-guarantee is a successful
compositional verification technique and has broad applica-
tions in model checking.

In [16, 17], Kwiatkowska et al. adapted the assume-
guarantee technique to probabilistic verification, which
means the assumption can also include quantitative proper-
ties. In our case, the hierarchical eventual leader election
protocol is inherently a layered architecture and the whole
election process consists of two sequential sub processes, i.e.,
election within a cluster, and election within cluster heads.
This fact implies the opportunity of leveraging compositional
verification technique to tackle the complexity. From the de-
scription of the above protocol, we observe the precondition
of the upper layer election is that the lower layer cluster can
elect a unique head. Therefore, we introduce the assumption
that the model of lower layer can eventually elect a unique
head within a cluster.

As a result, the rules proposed in [16,17] can be applied in
our setting. The reason is that the focus therein is the paral-
lel composition of different modules, while here we need to
deal with the sequential composition, for which a new rule is
required. Let’s start with some basic definitions. We write
D(S) for the set of probabilistic distributions over S .

Definition 1 (Probabilistic automata). A probabilistic au-
tomaton (PA) is a tuple T = (S , α, A,∆, L) where

• S is a set of states;

• α is the initial distribution;
• A is a set of actions;
• ∆ ⊆ S × A ×D(S) is a probabilistic transition relation;
• L : S → 2AP is a labeling function.

Intuitively, at any state s of a PA T , a transition s
a
→ µ,

where a ∈ A is an action label and µ is a discrete probability
distribution over S , is available if (s, a, µ) ∈ ∆. In an execu-
tion of the model, the choice between the available transitions
at each state is nondeterministic; the choice of successor state
is then made randomly according to the distribution µ.

We define a sequential composition operator ◦ over two
probabilistic automata, T1 = (S 1, α1, A1,∆1, L1) and T2 =

(S 2, α2, A2,∆2, L2) where A1 ∩ A2 = ∅ and S 1 ∩ S 2 = ∅. Note
that these conditions can be easily satisfied by renaming. The
operator ◦ is parameterized by (F, π) where

• F ⊆ S 1 is a subset of absorbing states of T1.
• π : F → S 2 is a total function from F to S 2.

For the sake of simplicity, when applying the operator ◦, we
assume tacitly the associated F, π are given.

Formally, T1 ◦ T2 is given as

(S , α, A,∆, L)

where

• S = S 1] S 2, i.e., the disjoint union of S 1 and S 2;
• α = α1;
• A = A1] A2;
• ∆ = ∆1 �S 1\F ∪∆2 ∪ {(s,−, δπ(s)) | s ∈ F}; and

• L(s) =

L1(s) if s ∈ S 1

L2(s) if s ∈ S 2

Note here ∆1 �S 1\F := {(s, a, µ) ∈ ∆1 | s ∈ S 1 \ F}, δπ(s) is the
Dirac distribution, and − means the action name is irrelevant
here.

It is straightforward to verify that T1 ◦ T2 is indeed a PA.
We introduce the following assume-guarantee rule, specially
for the reachability property. Admittedly this is limited com-
paring to the one in [16, 17] which addresses general safety
fragment of PCTL. However, it is sufficient for the purpose
of the current paper.

Recall that T |= [♦F]≥p if for all schedulers of T , the prob-
ability of reaching F is no less than p.

Proposition 2. The following rule holds:

< true > T1 < [♦F1]≥p1 > < α(π(F1)) = 1 > T2 < [♦F1]≥p2 >

< true > T1 ◦ T2 < [♦F1]≥p1·p2 >

The correctness of the rule is a direct consequence of the
Markov property and the definitions and hence is omitted. We
note that the rule indeed can be generalized in different ways,
for instance, the condition of α(π(F1)) = 1 can be weakened.
It is not our focus to formulate a most general rule – instead,
a relatively simple, but sufficient, rule is favored.

8
Probabilistic Verification of Hierarchical Leader Election Protocols in Dynamic Systems

4.2 Design of Property Verification

The foremost interested property of the protocol is its correct-
ness, i.e., whether or not a unique leader will be elected final-
ly. As discussed previously, we leverage assume-guarantee
verification technique, and the assumption is the lower lay-
er model can eventually elect a unique head within a cluster.
We will verify this property first in the lower layer, and then
verify the upper layer model. Since the two elections are con-
ducted sequentially, this feature simplifies the compositional
verification greatly.

Before starting verification, we need to set up a signal in-
dicating the fact that a unique leader of a cluster/system is
elected. As we know, if and only if all the variables CH or
leader have the same value, then it can be regarded that a clus-
ter head or leader has been elected. Therefore, we label this
state as "elected". There are several ways to specify the state
"elected". In our experiment, we can calculate the minimum
probability of successfully electing a cluster head or leader.
If the minimum probability equals to 1.0 (100%), it means
that such "elected" is always reachable. Thus the property is
expressed as: Pmin = ? [F "elected"]. On the other hand,
we can also specify the property in other ways, for example,
from the initial state, all paths can eventually reach the same
destination that the "elected" state is satisfied. In this way, the
property can be written as: P >= 1 [F "elected"].

In our experiment, we adopted the first approach to cal-
culate the probability of reaching the final "elected" state.
To scale up, we set up two parameters, i.e., "N" and "M",
where "N" is the number of processes within a cluster, and
"M" is the number of clusters of the system. Moreover, we
also measured the number of explored states, transitions and
the time needed to perform the complete verification. The ex-
periments were conducted on a PC with an Intel i7-4790 pro-
cessor of 3.6GHz and 32.0GB RAM running Ubuntu 14.04
LTS OS. The versions of PRISM and JDK are 4.3.1 and
1.8.0 respectively. To maximize the performance, in our ex-
periments, the option values of “PRISM_JAVAMAXMEM",
“PRISM_JAVASTACKSIZE" and “CUDD" are configured to
“Xmx20g", “Xss1536m" and “10g" respectively.

The results of lower layer model verification is given in
Table 3. The number of processes is denoted as N. From the
table, we can find that across all the configurations with the
number of processes N ranging from 6 to 10, a unique head
with probability value 1.0 was eventually elected. Our model
can scale up to 10 processes given the experiment environ-
ment described above with the value of α equal to xN/2y+ 1.
Time is measured in the unit of seconds, and consists of two
parts, i.e., model construction and verification.

The verification result of lower layer protocol indicates
that the assumption of successful election in lower layer hold-
s. Then we proceed to verify the upper layer model. The
experiment result is given in Table 4. The number of clus-
ters is denoted as M and the time unit is second. From the
table, we can observe that as long as the assumption holds,
the probability for the system to reach the "elected" state is

Table 3 Verification in lower layer (NC: not counted)
N Results State Transition Time(construction

No. No. , verifiation)(second)
6 1.0 1.596 ∗ 107 6.054 ∗ 107 (5.98, 4.34)
7 1.0 2.222 ∗ 108 1.012 ∗ 109 (20.20, 15.08)
8 1.0 3.095 ∗ 109 1.658 ∗ 1010 (151.30, 54.25)
9 1.0 4.322 ∗ 1010 2.675 ∗ 1011 (1844.60, 286.63)

10 1.0 6.057 ∗ 1011 4.261 ∗ 1012 (19056.65, 1389.92)
11 NC NC NC NC

1.0. Based on the principle of assume-guarantee technique,
we prove that a global leader could be eventually elected by
our protocol from the formal verification perspective. Since
the maximum number of processes in a cluster and the max-
imum number of clusters are both 10, our model can support
up to 100 processes in total.

Table 4 Verification in upper layer
M Results State Transition Time(construction

No. No. , verifiation)(second)
6 1.0 1.772 ∗ 106 6.352 ∗ 106 (1.96, 2.48)
7 1.0 1.766 ∗ 107 7.405 ∗ 107 (5.42, 2.61)
8 1.0 1.765 ∗ 108 8.490 ∗ 108 (25.14, 7.21)
9 1.0 1.768 ∗ 109 9.603 ∗ 109 (179.21, 26.46)

10 1.0 1.766 ∗ 1010 1.074 ∗ 1011 (4083.19, 169.87)
11 NC NC NC NC

In order to demonstrate the superior productivity of prop-
erty verification by separate layers, we conduct a contrast ex-
periment with the verification of a holistic manner. The ex-
periment is based on a system combining with the lower and
the upper layer part, and its target is to elect a global leader
of the system directly. As the system is influenced by two
important factors, the number of clusters and the number of
processes of each cluster, we should design the experiment
comprehensively considering both factors at the same time.
Firstly, we set the cluster number and gradually increase the
average number of processes within one cluster. Next we in-
crease the cluster number and repeat the step. The experi-
ment result is summarized in Table 5 in which CNo. denotes
the number of clusters and PNo. denotes the number of pro-
cesses in one cluster. From Table 5 we can find the number of
processes of holistic verification is around 24. By using com-
positional reasoning, we can increase to 100, and get four
times enhancement in terms of scalability.

Table 5 Holistic verification (NC: Not Counted)
CNo., Results State Transition Time(construction
PNo. No. No. , verifiation)(second)
4, 3 1.0 5.092 ∗ 1011 4.668 ∗ 1012 (1.03, 4.27)
4, 4 1.0 1.551 ∗ 1014 1.875 ∗ 1015 (2.50, 10.99)
4, 5 NC NC NC NC
5, 4 1.0 1.844 ∗ 1019 2.825 ∗ 1020 (6.56, 32.00)
5, 5 NC NC NC NC
6, 4 1.0 1.162 ∗ 1023 2.136 ∗ 1024 (15.33, 66.28)
6, 5 NC NC NC NC

Front. Comput. Sci.
9

4.3 Extension of rewards

To analyze the quantitative properties of the protocol, we ex-
tended the model with the energy consumption via cost/re-
wards, and conducted the second experiment. Energy con-
sumption is an important concern, especially for wireless sen-
sor networks [18, 19]. Thus the energy consumption analysis
model of a protocol is much needed. Based on the work [20]
and many others [21], the energy consumption of internal op-
eration is usually 1.0-1.5 times of communication. Therefore,
we assume that the unit energy consumption of communica-
tion is 1 and that of the internal operation is 1.5.

In PRISM, by the concepts of costs and rewards, we aug-
ment the transition steps with real values denoting the ener-
gy consumption. Listing 12 describes the part of the aug-
mented model. The communication happens when processes
exchange the messages, for example, TRUST messages and
rec_from messages, so we add the rewards statements with
the synchronization label.

Listing 12 Modeling the energy consumption with Rewards

r e w a r d s " consumpt ion "
/ / e x e c u t e TRUST o p e r a t i o n s
[A1] t r u e : 1 ; . . .
[An] t r u e : 1 ;
/ / u p d a t e l e a d e r i n f o . o f e v e r y c l u s t e r
[A1_1] t r u e : 1 ; . . .
[An_1] t r u e : 1 ;
/ / i n t e r n a l o p e r a t i o n r e w a r d s
[] t r u e : 1 . 5 ; . . .
e n d r e w a r d s

After assigning the rewards to the transitions, then we can
calculate the accumulated energy consumption of selecting
an eventual leader. In PRISM, we specify as a property, i.e.,
Rmin = ? [F "elected"] and Rmax = ? [F "elected"], where Rmin

denotes the minimum accumulated rewards to reach the spec-
ified states and Rmax denotes the maximum rewards. The ex-
periment is conducted in the lower layer and upper layer sep-
arately, since both layers contain the election steps. Table 6
and 7 summarize the energy consumptions in lower layer and
upper layer respectively in which the minimum rewards, the
maximum rewards and the average rewards of electing a lead-
er are given. From the tables, we could also observe that the
scale of models suffers because of the additional states and
calculations introduced by rewards.

Table 6 Energy consumption in lower layer (NC: Not Counted)
Process No. Minimum Maximum Average

5 15.622 58.916 37.269
6 17.496 90.988 54.242
7 NC NC NC

4.4 Extension of unreliable channel

As aforementioned, the original model holds a strong as-
sumption that the underlying network is reliable. But real

Table 7 Energy consumption in upper layer (NC: Not Counted)
Cluster Head No. Minimum Maximum Average

5 33.518 38.469 35.993
6 39.078 44.338 41.708
7 44.156 50.036 47.096
8 NC NC NC

networks are subject to accidental events and message lost
during transmission happens frequently. We extend the pro-
tocol and modeling the channel reliability with probability.
Particularly, we use a single probability variable to present
the channels of both layers, and use quantitative analysis to
calculate the numerical possibility of a successful eventual
election. Then we can measure the relationship between the
channel reliability and the election result quantitatively. If the
probability of successful election of lower layer is p1 and that
of upper layer is p2, based on the product principle, we can
get the final probability of global election by p1*p2.

Listing 13 Unreliable communication channel modeling

[s] (t ime= t r u e)&(s u c c e s s = f a l s e)&(s1 =0) −>

p2 : (s1 ’=1)+ p3 : (s1 ’=1)&(R1_1 ’= f a l s e)+
p1 : (s1 ’=0)&(t ime1 ’= t ime1 +1) ;

. . .
f o r m u l a t ime =(t ime1 <= t)&(t ime2 <= t) . . . (t imen <= t) ;

Listing 13 illustrates our modeling for unreliable commu-
nication channels partially. For example, in the QUERY mes-
sage transmission phase, it is possible that the message get-
s lost. We assign it a value p1 to represent the probability
of message loss. Moreover, we define a threshold t for the
number of re-sending the message and set an integer variable
timeN for each process (N shall be replaced with the process
id) to count the number of fault times. If the value of t is
zero, then it reduces to the case of best-effort service where
there is no re-sending mechanism applied. Otherwise, when
the value of time1 is equal to that of t, it represents a fault and
the process will not retry.

In this experiment, we fix the number of clusters and pro-
cesses but make the reliability and re-sending times as vari-
ables. Particularly, in each cluster, we have four processes,
and the α value is three. The number of clusters are four. The
experiment consists of two parts. In the first part, we set the
retry number to be zero, i.e., re-sending the message is not
allowed in case of message loss. The message loss proba-
bility changes from 0.005 to 0.2, and the resulting election
success probability drops from 0.8778 to 0.0719 according-
ly. Table 8 summarizes the relation between the message loss
rate and the election success probability. Figure 1 illustrates
this pictorially.

In the second part of the experiment, we add the factor of
retry in case of message loss and make the channel of reli-
ability fixed. Particularly, we set the retry value from one
to five, and the ratio of message loss to be 0.2. The results
are summarized in Table 9 and illustrated in Figure 2. From

10
Probabilistic Verification of Hierarchical Leader Election Protocols in Dynamic Systems

Table 8 Election with unreliable channels without retry mechanism
p1 0.005 0.01 0.05 0.1 0.2

lower layer 0.9801 0.9606 0.8145 0.6561 0.4096
upper layer 0.8956 0.8106 0.4674 0.3130 0.1756

total 0.8778 0.7787 0.3807 0.2054 0.0719

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.005 0.01 0.05 0.1 0.2

lower layer

upper layer

total

Fig. 1 Experimental results without retry mechanism

the table, we can observe that the value of successful election
probability increases gradually as the retry times go up.

Table 9 Election with unreliable channels with retry mechanism
retry times 1 2 3 4 5
lower layer 0.8493 0.9684 0.9961 0.9994 0.9999
upper layer 0.5310 0.7696 0.9208 0.9796 0.9944

total 0.4510 0.7453 0.9172 0.9790 0.9943

5 Discussion

As mentioned before, PRISM model checker uses a state-
transition based language which is quite different from im-
perative languages. Therefore, we have to abstract away
some operation details during the modeling phase. Second-
ly, the protocol contains many set operations, such as union
and intersection. The set data structure is not supported by
the PRISM modeling language explicitly. We use Boolean
bit vectors to mimic the set operation. Concretely, we as-
sociate each set element with a corresponding Boolean Vec-
tor. Since we know the value of the elements in the set be-
forehand, if it appears in the set, we set the corresponding
Boolean bit to be true, and otherwise false. For example,
we have two Sets, i.e., A = {1, 2, 3}, B = {3, 4}, then we
define a superset as S = {1, 2, 3, 4} and a Boolean bit vec-
tor for each set accordingly. Thus for set A, the bit vec-
tor is {true, true, true, f alse}, and for set B, the bit vector is
{ f alse, f alse, true, true}. Therefore, to calculate A ∪ B, we
can set the bit vector to be {true, true, true, true}; to calculate
A ∩ B, we set the bit vector to be { f alse, f alse, true, f alse}.

Listing 14 Communication pattern illustration

[A2] (s2 =3) & (TRUST2= t r u e) −> a c t i o n . . . ;
[A2] (s2 =3) & (TRUST2= f a l s e) −> a c t i o n . . . ;

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5

lower layer

upper layer

total

Fig. 2 Experimental results with retry mechanism

Moreover, in our verification experiment, we need to mea-
sure the performance of systems with different number of
processes. However, PRISM does not provide the template
functionality to facilitate scaling-up the model. Manual cod-
ing is time-consuming and error-prone. We observe that in
the model, the processes are essentially the same except for
their identities and the operations are quite similar. Hence,
we leverage a code generation technique to automate this pro-
cess. Concretely, we extract the patterns of internal opera-
tion and external communication, and leverage the rule-based
code generation technique to output the corresponding PRIS-
M models. For example, given a cluster of 10 processes, a
process needs to monitor the QUERY or TRUST messages
from other processes, the code pattern is illustrated in List-
ing 14. Although the number of statements can be different
among different system, it is associated with the number of
processes. Thus we can make the process number as the pa-
rameter and automate the system model generation process.
The parameterized model generation as well as the above ab-
straction technique can also be used in other similar protocol
verification settings.

6 Related Work

There are two relevant threads of research in the field. One is
about the leader election protocol design in distributed com-
puting, and the other is the formal analysis of protocols based
on model checking. In this section, we briefly review some
representative work in each category.

In [6], Mostefaoui et al. adapted an existing leader elec-
tion protocol designed for static systems and then customize
it so as to work in dynamic systems. The correctness of the
protocol is established through theoretical proof. Different
from our work, the protocol cannot be applied in the hierar-
chical cluster based settings and neither did they give a quan-
titative analysis of their work based on formal verification.
Larrea et al. [7] considered the eventual leader election in an
asynchronous system prone to process crashes and they pro-
posed a specification of Ω suited to dynamic systems. Then
they verified its correctness and introduced the notation of an
eventual leader suited to dynamic systems and simultaneous-
ly an additional property related to the stability of systems.

Front. Comput. Sci.
11

Gupta et al. [22] proposed a scalable leader election protocol
suitable for large process groups under a weak membership
requirement. The protocol supported quite good guarantees
about termination in the sense of the classical specification
of the election problem and of generating a fixed number of
processes, both independent of group size. Different from our
work, neither of the above two approaches considered quanti-
tative properties based on formal verification. In [23], Tang et
al. proposed a novel leader election protocol to cope with the
situations where a unique identify for a process is not always
possible. But it is constrained within the scope of static sys-
tems instead of dynamic systems as considered in our work.

Meanwhile, probabilistic model checking, as a typical
method of formal verification, plays an important role in the
verification against the safety and security properties of var-
ious kinds of protocols. In [24], Duflot et al. provided an
overview of this area and discussed two approaches to the
implementation of quantitative verification of these protocol-
s based on probabilistic model checking. Baier et al. [25]
focused on the strength and limitations of probabilistic mod-
el checking in the context of a multi-disciplinary project, in
which they applied formal approaches for reasoning about
energy-awareness and other quantitative aspects of low-level
resource management protocols. Naskos et al. [26] concen-
trated on the on-demand resource provisioning in cloud com-
puting, referred as cloud elasticity. They proposed a method
about the development of more formalized and dependable
elasticity policies and presented an extensible way to en-
force elasticity through the dynamic instantiation and online
quantitative verification of Markov decision process by using
probabilistic model checking. In [27], He et al. leveraged the
probabilistic model checking to verify a newly proposed pipe
protocol in the domain of Internet-of-Things where quantita-
tive analysis can be conducted. The application of probabilis-
tic verification of these works is similar to ours, but they did
not deal with the consensus problems addressed by eventual
leader election protocols in distributed computing. Zhang et
al. [28] proposed a method to verify properties of the Timing-
sync Protocol for Sensor Netowrks (TPSN). Different from
ours, the quantitative aspect of verification is mainly con-
ducted based on statistical verification, which is essential-
ly a simulation-based approach. The quantitative analysis
of eventual leader election protocols by probabilistic mod-
el checking were conducted in [5, 13, 20]. But in all these
works, either they only dealt with the static environment set-
tings [5, 20], or they did not consider the hierarchical cluster
based system models [13].

7 Conclusion and Future Work

Recently, a lot of efforts have been given to the design of
eventual leader election protocols in different environmental
settings, but relatively little emphasis has been given to the
formal verification and quantitative analysis. In this paper,

we complement this by using probabilistic model checking
to verify a newly proposed hierarchical leader election proto-
col for dynamic system. Particularly, we use a compositional
verification technique, i.e., assume-guarantee to verify the t-
wo layers respectively, and demonstrate a performance boost
compared with holistic verification. We also augment the o-
riginal model with additional features by cost/rewards, and
with unreliable communication channels by probability, and
thus more quantitative properties can be analyzed, such as en-
ergy consumption, and the relation between eventual election
and the message loss rate. Although we only consider the
hierarchical leader election protocol in our paper, the tech-
nique can also be extended to model and verify other similar
consensus protocols or resource-restricted routing protocol-
s [14, 18] in wireless sensor networks.

To the best of our knowledge, this is the first work to apply
quantitative verification techniques to the hierarchical leader
election protocol design. But the potential of probabilistic
model checking has not been fully exploited, and future re-
search possibilities include more detailed investigation on the
fully dynamic settings prior to arriving at the stable phase,
and the property analysis on the model of more sophisticated
reliability control mechanisms against communication chan-
nels.

Acknowledgements This work was partially supported by the Fundamen-
tal Research Funds for the Central Universities under grant No. NS2016093.

References

1. Sara Tucci-Piergiovanni and Roberto Baldoni. Eventual leader elec-

tion in infinite arrival message-passing system model with bounded

concurrency. In Dependable Computing Conference (EDCC), 2010

European, pages 127–134. IEEE, 2010.

2. Gurdip Singh. Leader election in the presence of link failures. IEEE

Transactions on Parallel & Distributed Systems, (3):231–236, 1996.

3. Koji Nakano and Stephan Olariu. A survey on leader election protocols

for radio networks. In Parallel Architectures, Algorithms and Network-

s, 2002. I-SPAN’02. Proceedings. International Symposium on, pages

63–68. IEEE, 2002.

4. Michael Fischer and Hong Jiang. Self-stabilizing leader election in

networks of finite-state anonymous agents. In Principles of Distributed

Systems, pages 395–409. Springer, 2006.

5. Rena Bakhshi, Wan Fokkink, Jun Pang, and Jaco Van De Pol. Leader

election in anonymous rings: Franklin goes probabilistic. In Fifth Ifip

International Conference On Theoretical Computer Science–Tcs 2008,

pages 57–72. Springer, 2008.

6. Achour Mostefaoui, Michel Raynal, Corentin Travers, Stacy Patterson,

Divyakant Agrawal, and AE Abbadi. From static distributed systems to

dynamic systems. In Reliable Distributed Systems, 2005. SRDS 2005.

24th IEEE Symposium on, pages 109–118. IEEE, 2005.

7. Mikel Larrea, Michel Raynal, Iratxe Soraluze, and Roberto Cortiñas.

Specifying and implementing an eventual leader service for dynamic

12
Probabilistic Verification of Hierarchical Leader Election Protocols in Dynamic Systems

systems. International Journal of Web and Grid Services, 8(3):204–

224, 2012.

8. Carlos Gómez-Calzado, Alberto Lafuente, Mikel Larrea, and Michel

Raynal. Fault-tolerant leader election in mobile dynamic distributed

systems. In Dependable Computing (PRDC), 2013 IEEE 19th Pacific

Rim International Symposium on, pages 78–87. IEEE, 2013.

9. Huaguan Li, Weigang Wu, and Yu Zhou. Hierarchical eventual lead-

er election for dynamic systems. In Algorithms and Architectures for

Parallel Processing, pages 338–351. LNCS, vol.8630, Springer, 2014.

10. Christel Baier, Joost-Pieter Katoen, et al. Principles of model checking,

volume 26202649. MIT press Cambridge, 2008.

11. Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, and David Park-

er. Automated verification techniques for probabilistic systems. In

Formal Methods for Eternal Networked Software Systems, pages 53–

113. Springer, 2011.

12. Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0:

verification of probabilistic real-time systems. Lecture Notes in Com-

puter Science, 6806:585–591, 2011.

13. Jiayi Gu, Yu Zhou, Taolue Chen, and Weigang Wu. Analyzing eventual

leader election protocols for dynamic systems by probabilistic model

checking. In Cloud Computing and Security, pages 192–205. LNCS,

vol.9483, Springer, 2015.

14. Weigang Wu, Jiannong Cao, and Michel Raynal. Eventual cluster-

er: A modular approach to designing hierarchical consensus protocols

in manets. Parallel and Distributed Systems, IEEE Transactions on,

20(6):753–765, 2009.

15. Zhiwei Yang, Weigang Wu, Yishun Chen, and Jun Zhang. Efficient

information dissemination in dynamic networks. In Parallel Process-

ing (ICPP), 2013 42nd International Conference on, pages 603–610.

IEEE, 2013.

16. Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang

Qu. Assume-guarantee verification for probabilistic systems. In Tools

and Algorithms for the Construction and Analysis of Systems, pages

23–37. Springer, 2010.

17. Marta Z. Kwiatkowska, Gethin Norman, David Parker, and Hongyang

Qu. Compositional probabilistic verification through multi-objective

model checking. Inf. Comput., 232:38–65, 2013.

18. Jian Shen, Haowen Tan, Jin Wang, Jinwei Wang, and Sungyoung Lee.

A novel routing protocol providing good transmission reliability in un-

derwater sensor networks. Journal of Internet Technology, 16(1):171–

178, 2015.

19. Shengdong Xie and Yuxiang Wang. Construction of tree network with

limited delivery latency in homogeneous wireless sensor networks.

Wireless personal communications, 78(1):231–246, 2014.

20. Haidi Yue and Joost-Pieter Katoen. Leader election in anonymous

radio networks: model checking energy consumption. In Analytical

and Stochastic Modeling Techniques and Applications, pages 247–261.

Springer, 2010.

21. Tifenn Rault, Abdelmadjid Bouabdallah, and Yacine Challal. Energy

efficiency in wireless sensor networks: A top-down survey. Computer

Networks, 67:104–122, 2014.

22. Indranil Gupta, Robbert Van Renesse, and Kenneth P Birman. A prob-
abilistically correct leader election protocol for large groups. In Dis-

tributed Computing, pages 89–103. Springer, 2000.

23. Jian Tang, Ernesto Jiménez, Carlos Herrera, and Sergio Aréval-

o Viñuales. Eventual election of multiple leaders for solving consensus

in anonymous systems. The Journal of Supercomputing, (10):1–18,

2015.

24. Marie Duflot, Marta Kwiatkowska, Gethin Norman, David Parker, Syl-

vain Peyronnet, Claudine Picaronny, and Jeremy Sproston. Practical

applications of probabilistic model checking to communication proto-

cols. 2012.

25. Christel Baier, Clemens Dubslaff, Joachim Klein, Sascha Klüppelholz,

and Sascha Wunderlich. Probabilistic model checking for energy-

utility analysis. In Horizons of the Mind. A Tribute to Prakash Panan-

gaden, pages 96–123. Springer, 2014.

26. Athanasios Naskos, Emmanouela Stachtiari, Anastasios Gounaris,

Panagiotis Katsaros, Dimitrios Tsoumakos, Ioannis Konstantinou, and

Spyros Sioutas. Dependable horizontal scaling based on probabilis-

tic model checking. In Cluster, Cloud and Grid Computing (CC-

Grid), 2015 15th IEEE/ACM International Symposium on, pages 31–

40. IEEE, 2015.

27. Kangli He, Min Zhang, Jia He, and Yixiang Chen. Probabilistic model

checking of pipe protocol. In Theoretical Aspects of Software Engi-

neering (TASE), 2015 International Symposium on, pages 135–138.

IEEE, 2015.

28. Fengling Zhang, Lei Bu, Linzhang Wang, Jianhua Zhao, Xin Chen,

Tian Zhang, and Xuandong Li. Modeling and evaluation of wireless

sensor network protocols by stochastic timed automata. Electronic

Notes in Theoretical Computer Science, 296:261–277, 2013.

