Skip to main content
Log in

Large-scale video compression: recent advances and challenges

  • Review Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

The evolution of social network and multimedia technologies encourage more and more people to generate and upload visual information, which leads to the generation of large-scale video data. Therefore, preeminent compression technologies are highly desired to facilitate the storage and transmission of these tremendous video data for a wide variety of applications. In this paper, a systematic review of the recent advances for large-scale video compression (LSVC) is presented. Specifically, fast video coding algorithms and effective models to improve video compression efficiency are introduced in detail, since coding complexity and compression efficiency are two important factors to evaluate video coding approaches. Finally, the challenges and future research trends for LSVC are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wiegand T, Sullivan G J, Bjøntegaard G, Luthra A. Overview of the H.264/AVC video coding standard. IEEE Transactions on Circuits and Systems for Video Technology, 2003, 13(7): 560–576

    Article  Google Scholar 

  2. Sullivan G J, Ohm J R, Han W J, Wiegand T. Overview of the high efficiency video coding (HEVC) standard. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12): 1649–1668

    Article  Google Scholar 

  3. Cherubini M, Oliveira R D, Oliver N. Understanding near-duplicate videos: a user-centric approach. In: Proceedings of ACM International Conference on Multimedia. 2009, 35–44

    Google Scholar 

  4. Zhao L, Fan X, Ma S, Zhao D. Fast intra-encoding algorithm for high efficiency video coding. Signal Processing: Image Communication, 2014, 29(9): 935–944

    Google Scholar 

  5. Cho S, Kim M. Fast CU splitting and pruning for suboptimal CU partitioning in HEVC intra coding. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(9): 1555–1564

    Article  Google Scholar 

  6. Min B, Cheung R C C. A fast CU size decision algorithm for the HEVC intra encoder. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(5): 892–896

    Article  Google Scholar 

  7. Zhang Q, Sun J, Duan Y, Guo Z. A two-stage fast CU size decision method for HEVC intracoding. In: Proceedings of International Workshop on Multimedia Signal Processing. 2015, 1–6

    Google Scholar 

  8. Lee D, Jeong J. Fast intra coding unit decision for high efficiency video coding based on statistical information. Signal Processing: Image Communication. 2017, 55: 121–129

    Google Scholar 

  9. Wang Y, Fan X, Zhao L, Ma S, Zhao D, Gao W. A fast intra coding algorithm for HEVC. In: Proceedings of IEEE International Conference on Image Processing. 2014, 4117–4121

    Google Scholar 

  10. Wang Y, Takagi R, Yoshitake G. A simple and fast CU division algorithm for HEVC intra prediction. IEICE Transactions on Information and Systems, 2017, 100(5): 1140–1143

    Article  Google Scholar 

  11. Zhang Y, Kwong S, Zhang G, Pan Z, Yuan H, Jiang G. Low complexity HEVC intra coding for high-quality mobile video communication. IEEE Transactions on Industrial Informatics, 2015, 11(6): 1492–1504

    Article  Google Scholar 

  12. Liu Z, Yu X, Gao Y, Chen S, Ji X, Wang D. CU partition mode decision for HEVC hardwired intra encoder using convolution neural network. IEEE Transactions on Image Processing, 2016, 25(11): 5088–5103

    Article  MathSciNet  Google Scholar 

  13. Lim K, Lee J, Kim S, Lee S. Fast PU skip and split termination algorithm for HEVC intra prediction. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(8): 1335–1346

    Article  Google Scholar 

  14. Hu N, Yang E H. Fast mode selection for HEVC intra-frame coding with entropy coding refinement based on a transparent composite model. IEEE Transactions on Circuits and Systems for Video Tech nology, 2015, 25(9): 1521–1532

    Article  Google Scholar 

  15. Na S, LeeW, Yoo K. Edge-based fast mode decision algorithm for intra prediction in HEVC. In: Proceedings of IEEE International Conference on Consumer Electronics. 2014, 11–14

    Google Scholar 

  16. Chen G, Liu Z, Ikenaga T, Wang D. Fast HEVC intra mode decision using matching edge detector and kernel density estimation alike histogram generation. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2013, 53–56

    Google Scholar 

  17. Yao Y, Li X J, Lu Y. Fast intra mode decision algorithm for HEVC based on dominant edge assent distribution. Multimedia Tools and Applications, 2015, 75(4): 1963–1981

    Article  Google Scholar 

  18. Shen L, Zhang Z, An P. Fast CU size decision and mode decision algorithm for HEVC intra coding. IEEE Transactions on Consumer Electronics, 2013, 59(1): 207–213

    Article  Google Scholar 

  19. Zhang T, Sun M T, Zhao D, Gao W. Fast intra mode and CU size decision for HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2017, 27(8): 1714–1726

    Article  Google Scholar 

  20. Xiong J, Li H, Meng F, Wu Q, Ngan K N. Fast HEVC inter CU decision based on latent SAD estimation. IEEE Transactions on Multimedia, 2015, 17(12): 2147–2159

    Article  Google Scholar 

  21. Shen L, Liu Z, Zhang X, ZhaoW, Zhang Z. An effective CU size decision method for HEVC encoders. IEEE Transactions on Multimedia, 2013, 15(2): 465–470

    Article  Google Scholar 

  22. Pan Z, Kwong S, Zhang Y, Lei J, Yuan H. Fast coding tree unit depth decision for high efficiency video coding. In: Proceedings of IEEE International Conference on Image Processing. 2014, 3214–3218

    Google Scholar 

  23. Wang H, Heng Y, Dun H. Optimal stopping theory based algorithm for coding unit size decision in HEVC. In: Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. 2014, 1–6

    Google Scholar 

  24. Wu X, Wang H, Wei Z. Optimal stopping theory based fast coding tree unit decision for high efficiency video coding. In: Proceedings of Visual Communications and Image Processing. 2016, 1–4

    Google Scholar 

  25. Li Y, Yang G, Zhu Y, Ding X, Sun X. Adaptive inter CU depth decision for HEVC using optimal selection model and encoding parameters. IEEE Transactions on Broadcasting, 2017, 63(3): 535–546

    Article  Google Scholar 

  26. Zupancic I, Blasi S G, Peixoto E, Izquierdo E. Inter-prediction optimizations for video coding using adaptive coding unit visiting order. IEEE Transactions on Multimedia, 2016, 18(9): 1677–1690

    Article  Google Scholar 

  27. Yang J, Kim J, Won K, Lee H, Jeon B. Early skip detection for HEVC. JCT-VC document, JCTVC-G543, 2011.

    Google Scholar 

  28. Goswami K, Lee J H, Jang K S, Kim B G, Kwon K K. Entropy difference-based early skip detection technique for high-efficiency video coding. Journal of Real-Time Image Processing, 2016, 12(2): 237–245

    Article  Google Scholar 

  29. Lee H, Shim H J, Park Y, Jeon B. Early skip mode decision for HEVC encoder with emphasis on coding quality. IEEE Transactions on Broadcasting, 2015, 61(3): 388–397

    Article  Google Scholar 

  30. Li Y, Yang G, Zhu Y, Ding X, Sun X. Unimodal stopping model based early SKIP mode decision for high efficiency video coding. IEEE Transactions on Multimedia, 2017, 19(7): 1431–1441

    Article  Google Scholar 

  31. Shen L, Zhang Z, Liu Z. Adaptive inter-mode decision for HEVC jointly utilizing inter-level and spatiotemporal correlations. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 24(10): 1709–1722

    Article  Google Scholar 

  32. Zhang J, Li B, Li H. An efficient fast mode decision method for inter prediction in HEVC. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(8): 1502–1515

    Article  Google Scholar 

  33. Jung S H, Park H W. A fast mode decision method in HEVC using adaptive ordering of modes. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(10): 1846–1858

    Article  Google Scholar 

  34. Ahn S, Lee B, Kim M. A novel fast CU encoding scheme based on spatiotemporal encoding parameters for HEVC inter coding. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(3): 422–435

    Article  Google Scholar 

  35. Chen F, Li P, Peng Z, Jiang G, Yu M, Shao F. A fast inter coding algorithm for HEVC based on texture and motion quad-tree models. Signal Processing: Image Communication, 2016, 47: 271–279

    Google Scholar 

  36. Kim H S, Park R H. Fast CU partitioning algorithm for HEVC using an online-learning-based bayesian decision rule. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 26(1): 130–138

    Article  Google Scholar 

  37. Correa G, Assuncao P A, Agostini L V, Silva Cruz L A. Fast HEVC encoding decisions using data mining. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(4): 660–673

    Article  Google Scholar 

  38. Zhang Y, Kwong S, Wang X, Yuan H, Pan Z, Xu L. Machine learning-based coding unit depth decisions for flexible complexity allocation in high efficiency video coding. IEEE Transactions on Image Processing, 2015, 24(7): 2225–2238

    Article  MathSciNet  Google Scholar 

  39. Zhu L, Zhang Y, Pan Z, Wang R, Kwong S, Peng Z. Binary and multiclass learning based low complexity optimization for HEVC encoding. IEEE Transactions on Broadcasting, 2017, 63(3): 547–561

    Article  Google Scholar 

  40. Kim I K, McCann K, Sugimoto K, Han W J. High efficiency video coding (HEVC) test model 10 encoder description. JCT-VC, Doc. JCTVC-L1002, 2013

    Google Scholar 

  41. Zhao L, Tian Y, Huang T. Background-foreground division based search for motion estimation in surveillance video coding. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2014, 1–6

    Google Scholar 

  42. Zhu W, Ding W, Xu J, Shi Y, Yin B. Hash-based block matching for screen content coding. IEEE Transactions on Multimedia, 2015, 17(7): 935–944

    Article  Google Scholar 

  43. Gao L, Dong S, Wang W, Wang R, Gao W. A novel integer-pixel motion estimation algorithm based on quadratic prediction. In: Proceedings of IEEE International Conference on Image Processing. 2015, 2810–2814

    Google Scholar 

  44. Chen K, Sun J, Guo Z, Zhao D. A novel two-step integer-pixel motion estimation algorithm for HEVC encoding on a GPU. In: Proceedings of International Conference on Multimedia Modeling. 2017, 28–36

    Chapter  Google Scholar 

  45. Liao Z T, Shen C A. A novel search window selection scheme for the motion estimation of HEVC systems. In: Proceedings of International SoC Design Conference. 2015, 267–268

    Google Scholar 

  46. Li Y, Liu Y, Yang H, Yang D. An adaptive search range method for HEVC with the k-nearest neighbor algorithm. In: Proceedings of Visual Communications and Image Processing. 2015, 1–4

    Google Scholar 

  47. Pan Z, Lei J, Zhang Y, Sun X, Kwong S. Fast motion estimation based on content property for low-complexity H.265/HEVC encoder. IEEE Transactions on Broadcasting, 2016, 62(3): 675–684

    Article  Google Scholar 

  48. Fan R, Zhang Y, Li B. Motion classification-based fast motion estimation for high-efficiency video coding. IEEE Transactions on Multimedia, 2017, 19(5): 893–907

    Article  Google Scholar 

  49. Lim D B, Choi Y K, Lee H J, Chae S I. A fast fractional motion estimation algorithm for high efficiency video coding. In: Proceedings of International Conference on Electronics, Information, and Communications. 2016, 1–4

    Google Scholar 

  50. Jia S, Ding W, Shi Y, Yin B. A fast sub-pixel motion estimation algorithm for HEVC. IEEE International Symposium on Circuits and Systems. 2016, 566–569

    Google Scholar 

  51. Zhang Y, Kwong S, Jiang G, Wang H. Efficient multi-reference frame selection algorithm for hierarchical B pictures in multiview video coding. IEEE Transactions on Broadcasting, 2011, 57(1): 15–23

    Article  Google Scholar 

  52. Liu Z, Li L, Song Y, Li S, Goto S, Ikenaga T. Motion feature and hadamard coefficient-based fast multiple reference frame motion estimation for H.264. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(5): 620–632

    Article  Google Scholar 

  53. Wang S, Ma S, Wang S, Zhao D, Gao W. Fast multi reference frame motion estimation for high efficiency video coding. In: Proceedings of IEEE International Conference on Image Processing. 2013, 2005–2009

    Google Scholar 

  54. Yang S H, Huang K S. HEVC fast reference picture selection. Electronics Letters, 2015, 51(25): 2109–2111

    Article  Google Scholar 

  55. Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S. Fast reference frame selection based on content similarity for low complexity HEVC encoder. Journal of Visual Communication and Image Representation, 2016, 40: 516–524

    Article  Google Scholar 

  56. Teng S W, Hang H M, Chen Y F. Fast mode decision algorithm for residual quadtree coding in HEVC. In: Proceedings of IEEE Visual Communications and Image Processing. 2011, 1–4

    Google Scholar 

  57. Shen L, Zhang Z, Zhang X, An P, Liu Z. Fast TU size decision algorithm for HEVC encoders using Bayesian theorem detection. Signal Processing: Image Communication, 2015, 32: 121–128

    Article  Google Scholar 

  58. Wu X, Wang H, Wei Z. Bayesian rule based fast TU depth decision algorithm for high efficiency video coding. In: Proceedings of IEEE Visual Communications and Image Processing. 2016, 1–4

    Google Scholar 

  59. Wang H, Kwong S. Prediction of zero quantized DCT coefficients in H.264/AVC using hadamard transformed information. IEEE Transactions on Circuits and Systems for Video Technology, 2008, 18(4): 510–515

    Article  Google Scholar 

  60. Wang H, Kwong S. Hybrid model to detect zero quantized DCT coefficients in H.264. IEEE Transactions on Multimedia, 2007, 9(4): 728–735

    Article  Google Scholar 

  61. Wang H, Du H, Wu J. Predicting zero coefficients for high efficiency video coding. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2014, 1–6

    Google Scholar 

  62. Wang H, Du H, Lin W, Kwong S, Au O C, Wu J, Wei Z. Early detection of all-zero 4 × 4 blocks in High Efficiency Video Coding. Journal of Visual Communication and Image Representation, 2014, 25(7): 1784–1790

    Article  Google Scholar 

  63. Lee B, Jung J, Kim M. An all-zero block detection scheme for low-complexity HEVC encoders. IEEE Transactions on Multimedia, 2016, 18(7): 1257–1268

    Article  Google Scholar 

  64. Au O C, Li S, Zou R, Dai W, Sun L. Digital photo album compression based on global motion compensation and intra/inter prediction. In: Proceedings of International Conference on Audio, Language and Image Processing. 2012, 84–90

    Google Scholar 

  65. Zou R, Au O C, Zhou G, Dai W, Hu W, Wan P. Personal photo album compression and management. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2013, 1428–1431

    Google Scholar 

  66. Ling Y, Au O C, Zou R, Pang J, Yang H, Zheng A. Photo album compression by leveraging temporal-spatial correlations and HEVC. In: Proceedings of IEEE International Symposium on Circuits and Systems. 2014, 1917–1920

    Google Scholar 

  67. Shi Z, Sun X, Wu F. Photo album compression for cloud storage using local features. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2014, 4(1): 17–28

    Article  Google Scholar 

  68. Wu H, Sun X, Yang J, Zeng W, Wu F. Lossless compression of JPEG coded photo collections. IEEE Transactions on Image Processing, 2016, 25(6): 2684–2696

    Article  MathSciNet  Google Scholar 

  69. Vetro A, Wiegand T, Sullivan G J. Overview of the stereo and multiview video coding extensions of the H.264/MPEG-4 AVC standard. Proceedings of the IEEE, 2011, 99(4): 626–642.

    Article  Google Scholar 

  70. Merkle P, Smoli´c A, M¨uller K, Wiegand T. Efficient prediction structures for multiview video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(11): 1461–1473

    Article  Google Scholar 

  71. Wang H, Ma M, Jiang Y G, Wei Z. A framework of video coding for compressing near-duplicate videos. In: Proceedings of International Conference on Multimedia Modeling. 2014, 518–528

    Chapter  Google Scholar 

  72. Wang H, Ma M, Tian T. Effectively compressing near-duplicate videos in a joint way. In: Proceedings of IEEE International Conference on Multimedia and Expo. 2015, 1–6

    Google Scholar 

  73. Bay H, Tuytelaars T, Gool L V. Surf: speeded up robust features. In: Proceedings of European Conference on Computer Vision. 2006, 404–417

    Google Scholar 

  74. Muja M, Lowe D G. Scalable nearest neighbor algorithms for high dimensional data. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(11): 2227–2240

    Article  Google Scholar 

  75. Fishler M A, Bolles R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381–395

    Article  MathSciNet  Google Scholar 

  76. Wang H, Tian T, Ma M, Wu J. Joint compression of near-duplicate videos. IEEE Transactions on Multimedia, 2017, 19(5): 908–920

    Article  Google Scholar 

  77. Wu X, Ngo CW, Hauptmann A G, Tan H K. Real-time near-duplicate elimination for web video search with content and context. IEEE Transactions on Multimedia, 2009, 11(2): 196–207

    Article  Google Scholar 

  78. Wang H, Zhu F, Xiao B, Wang L, Jiang Y G. Gpu-based map-reduce for large-scale near-duplicate video retrieval. Multimedia Tools and Applications, 2015, 74(23): 10515–10534.

    Article  Google Scholar 

  79. Gao Y, Zhu C, Li S, Yang T. Temporal dependent rate-distortion optimization for low-delay hierarchical video coding. IEEE Transactions on Image Processing, 2017, 26(9): 4457–4470.

    Article  MathSciNet  Google Scholar 

  80. Chen H, Zhang T, Sun M T, Saxena A, Budagavi M. Improving intra prediction in high-efficiency video coding. IEEE Transactions on Image Processing, 2016, 25(8): 3671–3682

    Article  MathSciNet  Google Scholar 

  81. Lan C, Xu J, Shi G, Wu F. Variable block-sized signal dependent transform for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2689032

    Google Scholar 

  82. Li L, Li H, Liu D, Li Z, Yang H, Lin S, Chen H, Wu F. An efficient four-parameter affine motion model for video coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2699919

    Google Scholar 

  83. Ma S, Zhang X, Zhang J, Jia C, Wang S, Gao W. Nonlocal in-loop filter: the way toward next-generation video coding?. IEEEMultiMedia, 2016, 23(2): 16–26

    Google Scholar 

  84. Chen J, Chen Y, Karczewicz M, Li X, Liu H, Zhang L, Zhao X. Coding tools investigation for next generation video coding. ITU-T SG16 Doc. COM16-C806, 2015

    Google Scholar 

  85. Karczewicz M, Chen J, Chien W J, Li X, Said A, Zhang L, Zhao X. Study of coding efficiency improvements beyond HEVC.MPEG Doc. m37102, 2015

    Google Scholar 

  86. An J, Huang H, Zhang K. Quadtree plus binary tree structure integration with JEM tools. Joint Video Exploration Team, JVET-B0023, 2016

    Google Scholar 

  87. Chen J, Chien W J, Karczewicz M, Li X, Liu H, Said A, Zhang L, Zhao X. Further improvements to HMKTA-1.0. ITU-T SG16/Q6 Doc. VCEG-AZ07, 2015

    Google Scholar 

  88. Alshina E, Alshin A, Min J H, Choi K, Saxena A, Budagavi M. Known tools performance investigation for next generation video coding. ITU-T SG16/Q6 Doc. VCEG-AZ05, 2015

    Google Scholar 

  89. Chien W J, Karczewicz M. Extension of advanced temporal motion vector predictor. ITU-T SG16/Q6 Doc. VCEG-AZ10, 2015

    Google Scholar 

  90. Choi K, Alshina E, Alshin A, Kim C. Information on coding efficiency improvements over HEVC for 4K content. MPEG Doc. m37043, 2015

    Google Scholar 

  91. Martin E. Saccadic suppression: a review and an analysis. Psychological Bulletin, 1974, 81(12): 899–917

    Article  Google Scholar 

  92. Itti L, Niebur E. A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254–1259

    Article  Google Scholar 

  93. Gao D, Mahadevan V, Vasoncelos N. The discriminant center-surround hypothesis for bottom-up saliency. In: Proceedings of Advances in Neural Information Processing Systems. 2007, 497–504

    Google Scholar 

  94. Goferman S, Zelnik-Manor L, Tal A. Context-aware saliency detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915–1926

    Article  Google Scholar 

  95. Imamoglu N, Lin W, Fang Y. A saliency detection model using lowlevel features based on wavelet transform. IEEE Transactions onMultimedia, 2013, 15(1): 96–105

    Article  Google Scholar 

  96. Hadizadeh H, Bajic I V. Saliency-aware video compression. IEEE Transactions on Image Processing, 2014, 23(1): 19–33

    Article  MathSciNet  MATH  Google Scholar 

  97. Li Y, Liao W, Huang J, He D, Chen Z. Saliency based perceptual HEVC. In: Proceedings of IEEE International Conference on Multimedia and Expo Workshops. 2014, 1–5

    Google Scholar 

  98. Doulamis N, Doulamis A, Kalogeras D, Kollias S. Low bit-rate coding of image sequences using adaptive regions of interest. IEEE Transactions on Circuits and Systems for Video Technology, 1998, 8(8): 928–934

    Article  Google Scholar 

  99. Xu M, Deng X, Li S, Wang Z. Region-of-interest based conversational HEVC coding with hierarchical perception model of face. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(3): 475–489

    Article  Google Scholar 

  100. Yang X, Lin W, Lu Z, Ong E, Yao S. Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile. IEEE Transactions on Circuits and Systems for Video Technology, 2005, 15(6): 742–752

    Article  Google Scholar 

  101. Liu A, Lin W, Paul M, Deng C, Zhang F. Just noticeable difference for images with decomposition model for separating edge and textured regions. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(11): 1648–1652

    Article  Google Scholar 

  102. Wu J, Shi G, LinW, Liu A, Qi F. Just noticeable difference estimation for images with free-energy principle. IEEE Transactions on Multimedia, 2013, 15(7): 1705–1710

    Article  Google Scholar 

  103. Wu J, Li L, Dong W, Shi G, Lin W, Kuo C C J. Enhanced just noticeable difference model for images with pattern complexity. IEEE Transactions on Image Processing, 2017, 26(6): 2682–2693

    Article  MathSciNet  Google Scholar 

  104. Ahumada A, Peterson H. Luminance-model-based DCT quantization for color image compression. Proceedings of the SPIE, 1992, 1666: 365–374

    Article  Google Scholar 

  105. Hontsch I, Karam L J. Adaptive image coding with perceptual distortion control. IEEE Transactions on Image Processing, 2002, 11(3): 213–222

    Article  Google Scholar 

  106. Wei Z, Ngan K N. Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain. IEEE Transactions on Circuits and Systems for Video Technology, 2009, 19(3): 337–346

    Article  Google Scholar 

  107. Hu S, Wang H, Kuo C C J. A GMM-based stair quality model for human perceived JPEG images. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. 2016, 1070–1074

    Google Scholar 

  108. Jin L, Yuchieh L J, Hu S, Wang H, Wang P, Katsavounidis I, Aaron A, Kuo C C J. Statistical study on perceived JPEG image quality via MCL-JCI dataset construction and analysis. Electronic Imaging, 2016, 9: 1–9

    Google Scholar 

  109. Chen Z, Guillemot C. Perceptually-friendly H.264/AVC video coding based on foveated just-noticeable-distortion model. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(6): 806–819

    Article  Google Scholar 

  110. Luo Z, Song L, Zheng S, Ling N. H.264/advanced video control perceptual optimization coding based on JND-directed coefficient suppression. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(6): 935–948

    Article  Google Scholar 

  111. Yang X K, Ling W S, Lu Z K, Ong E P, Yao S S. Just noticeable distortion model and its applications in video coding. Signal Processing: Image Communication, 2005, 20(7): 662–680

    Google Scholar 

  112. Kim J, Bae S H, Kim M. An HEVC-compliant perceptual video coding scheme based on JND models for variable block-sized transform kernels. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 25(11): 1786–1800

    Article  Google Scholar 

  113. Abdoli M, Henry F, Brault P, Duhamel P, Dufaux F. Intra prediction using in-loop residual coding for the post-HEVC standard. In: Proceedings of IEEE International Workshop on Multimedia Signal Processing. 2017, 1–6

    Google Scholar 

  114. Wang H, Fu J, Lin W, Hu S, Kuo C C J, Zuo L. Image quality assessment based on local linear lnformation and distortion-specific compensation. IEEE Transactions on Image Processing, 2017, 26(2): 915–926

    Article  MathSciNet  Google Scholar 

  115. Wang T, Chen M, Chao H. A novel deep learning-based method of improving coding efficiency from the decoder-end for HEVC. In: Proceedings of Data Compression Conference. 2017, 410–419

    Google Scholar 

  116. Li Y, Liu D, Li H, Li L, Wu F, Zhang H, Yang H. Convolutional neural network-based block up-sampling for intra frame coding. IEEE Transactions on Circuits and Systems for Video Technology, 2017, DOI: 10.1109/TCSVT.2017.2727682

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 61622115 and 61472281), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning (GZ2015005), and Shanghai Engineering Research Center of Industrial Vision Perception & Intelligent Computing (17DZ2251600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanli Wang.

Additional information

Tao Tian received the MS degree in computer engineering from Ningbo University, China in 2014, and is currently working toward the PhD degree at Tongji University, China. His research interests include near-duplicate video coding and perceptual video coding.

Hanli Wang received the BE and ME degrees in electrical engineering from Zhejiang University, China in 2001 and 2004, respectively, and the PhD degree in computer science from City University of Hong Kong(CityU), China in 2007. From 2007 to 2008, he was a research fellow with the Department of Computer Science, CityU. From 2007 to 2008, he was also a visiting scholar at Stanford University, USA. From 2008 to 2009, he was a research engineer with Precoad, Inc., USA. From 2009 to 2010, he was an Alexander von Humboldt Research Fellow at University of Hagen, Germany. Since 2010, he has been a full professor with the Department of Computer Science and Technology, Tongji University, China. His current research interests include digital video coding, computer vision, and machine learning.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, T., Wang, H. Large-scale video compression: recent advances and challenges. Front. Comput. Sci. 12, 825–839 (2018). https://doi.org/10.1007/s11704-018-7304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11704-018-7304-9

Keywords

Navigation