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Abstract

Motivation: The packing of genomic DNA from double string into highly-order hierarchial assemblies
has great impact on chromosome flexibility, dynamics and functions. The open and accessible regions
of chromosome are the primary binding positions for regulatory elements and are crucial to nuclear
processes and biological functions.
Results: Motivated by the success of flexibility-rigidity index (FRI) in biomolecular flexibility analysis and
drug design, we propose a FRI based model for quantitatively characterizing the chromosome flexibility.
Based on the Hi-C data, a flexibility index for each locus can be evaluated. Physically, the flexibility is
tightly related to the packing density. Highly compacted regions are usually more rigid, while loosely
packed regions are more flexible. Indeed, a strong correlation is found between our flexibility index and
DNase and ATAC values, which are measurements for chromosome accessibility. Recently, Gaussian
network model (GNM) is applied to analyze the chromosome accessibility and a mobility profile has
been proposed to characterize the chromosome flexibility. Compared with GNM, our FRI is slightly more
accurate (1% to 2% increase) and significantly more efficient in both computational time and costs. For a
5kb resolution Hi-C data, the flexibility evaluation process only takes FRI a few minutes on a single-core
processor. In contrast, GNM requires 1.5 hours on 10 CPUs. Moreover, interchromosome information
can be easily incorporated into the flexibility evaluation, thus further enhance the accuracy of our FRI. In
contrast, the consideration of interchromosome information into GNM will significantly increase the size
of its Laplacian matrix, thus computationally extremely challenging for the current GNM.
Availability: The software is available at https://github.com/jiajiepeng/FRI_chrFle.
Contact: xiakelin@ntu.edu.sg; jiajiepeng@nwpu.edu.cn

1 Introduction
The packing of chromosome into complicated three-dimensional hierarch-
ial structure has a profound effect on gene expression and other biological
functions (Schmitt et al., 2016a). For instance, chromatin loop is formed
when cis-regulatory element, such as enhancers, are folded into close spa-
tial proximity with its target promoter. This long-range chromatin contacts
are vital to the regulation of gene expression. Recently, the 4D nucleome

project is proposed to reveal the packing and dynamics of chromosome and
gain insight on the mechanism of gene regulation (Dekker et al., 2017).
A major driving force for the project is the advancement of genome-wide
C-techniques and C-data for multiple species and tissues (Dekker et al.,
2002; Simonis et al., 2006; Zhao et al., 2006; Fullwood et al., 2009;
de Wit and de Laat, 2012; Lieberman-Aiden et al., 2009; Dixon et al.,
2012; Nora et al., 2012; Jin et al., 2013; Bonev and Cavalli, 2016; Sch-
mitt et al., 2016b; Nagano et al., 2013). With the structure information
obtained from C-techniques, researchers begin to understand more about
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packing and organization principles of chromosomes. In general, the stru-
cture of mammalian chromosomes can be explored from several different
scales (Bonev and Cavalli, 2016), including nucleosome, chromatin fiber,
chromatin loops (Rao et al., 2014a), topological associated domain (TAD)
(Dixon et al., 2012; Nora et al., 2012), genomic compartment (Lieberman-
Aiden et al., 2009), chromosome territory (Lieberman-Aiden et al., 2009),
etc. A nucleosome is a basic building block for chromatin organization.
They interact with each other to form the 30 nm chromatin fibres with sole-
noid or zigzag shape. These chromatin fibres aggregate and form chromatin
loops, in which cis-regulatory element, such as enhancers, are folded into
close spatial proximity with its target promoter. From Hi-C data analysis,
larger-scale structures, i.e., TAD and genomic compartment, have been
defined. TADs, which are about 200 kilobases(Kb) to 2 megabases(Mb),
are chromosome components that are highly consistent between different
cell types and species. Genomic compartment, which is classified into
type A and type B, represents chromosome regions that either densely
or sparsely packed. The packing of chromosome into its hierarchial stru-
cture is greatly facilitated by various insulator proteins, cohesin complex,
mediator, border elements, loop-extruding complexes, other DNA-binding
proteins, as well as RNAs. Algorithms and models that based on C-data and
ENCODE data are proposed (Lieberman-Aiden et al., 2009; Dixon et al.,
2012; Filippova et al., 2014; Lévy-Leduc et al., 2014; Baù et al., 2011;
Hu et al., 2013; Zhang et al., 2013; Segal et al., 2014; Lesne et al., 2014;
Zhang and Wolynes, 2015; Imakaev et al., 2015). However, even with
these progresses, there is a lacking of physical models that quantitatively
analyzes the chromosome packing, flexibility and dynamic properties.

In structure biology, it is well-known that biomolecular flexibility,
dynamics and functions are tightly related to their structures. For insta-
nce, in an intrinsically disordered protein, its well-organized regions are
usually very rigid and highly stable. In contrast, its disorder parts, such as
hanging chains and extruding loops, are normally very flexible and easy
to interact with others. In fact, flexible regions in biomolecules are always
more dynamic and tend to have interactions with ligands or other biomole-
cules. Experimentally, flexility can be quantitatively measured in terms of
Debye-Waller factor (or B-factor). Various models have been proposed to
reveal the deep connection between biomolecular structure and flexibility
(Flores et al., 2007; Emekli et al., 2008; Keating et al., 2009; Shatsky et al.,
2004; Flores and Gerstein, 2007; Tama et al., 2000; Halle, 2002; Kundu
et al., 2002; Kondrashov et al., 2007; Song and Jernigan, 2007; Hinsen,
2008; Park et al., 2013; Demerdash and Mitchell, 2012; Zhang and Brüsch-
weiler, 2002; Lin et al., 2008; Huang et al., 2008; Li and Brüschweiler,
2009). Among these methods, flexibility-rigidity index (FRI) (Xia et al.,
2013; Opron et al., 2014) is one of the most accurate and efficient model
in B-factor prediction. In FRI model, a biomolecular structure is viewed
as an equilibrium state in which all the interactions from the surrounding
environment and within the molecule are well balanced. The unique posi-
tion of each atom in the structure is the outcome from the “fight" with all
the other atoms. Therefore, instead of resorting to the complicated protein
interaction Hamiltonian as in other methods, FRI measures the biomole-
cular flexibility by its topological connectivity or packing density (Halle,
2002).

Compared with the classic models, such as Gaussian network model
(GNM) and anisotropic network model (ANM), FRI has significantly
increased the accuracy and dramatically reduced the computational time.
In both GNM and ANM, a large matrix, either Laplacian matrix or Hes-
sian matrix, is constructed. Their B-factor prediction formula requires the
calculation of all the eigenvalues and eigenvectors of the matrix, which
can be time-consuming not to mention about the memory cost. Free from
eigenvalue decomposition, FRI only has the computational complexity
of O(N2) with N the total number of atoms. Fast FRI (fFRI) (Opron
et al., 2014) can further reduce the computational complexity to O(N)

with almost no scarifying the accuracy of the model. It only takes fFRI 30

seconds on a single-core processor to calculate the flexibility of an HIV
virus capsid with 313 236 residues (Opron et al., 2014). Multiscale FRI
(Opron et al., 2015a), Generalized FRI (Nguyen et al., 2016) and multi-
scale weighted colored graph (MWCG) based FRI (Bramer and Wei, 2018)
can further increase the accuracy of FRI models. Especially, MWCG based
FRI has set a new accuracy benchmark for protein flexibility analysis.
More interestingly, FRI model has been applied to protein-ligand bin-
ding affinity prediction in drug design (Nguyen et al., 2017). The results
from the FRI based machine learning model has significantly outperfor-
med all traditional models. This reveals that the rigidity strengthening can
be a potential mechanism for protein-ligand binding (Nguyen et al., 2017).
More recently, a virtual particle based FRI model is proposed for analyzing
the dynamics of extremely large-sized biomolecular complexes and orga-
nelles, especially the ones from Electron Microscopy Data Bank (EMDB)
(Xia and Wei, 2016; Xia et al., 2018). The success of the FRI model in
these subcellular structures have motivated us to propose the FRI based
model for chromosome packing, flexibility and dynamics analysis.

Recently, Gaussian network model has been used to quantitatively
characterize the chromatin accessibility. It is known that packing of DNA
into a compressed form causes accessibility problems for transcription and
DNA replication. In general, the chromatin packing density is negatively
correlated with transcriptional activity. For tightly packed chromatin regi-
ons, their DNA is less accessible to transcriptional machinery. For loosely
packed chromatin regions, the DNA is more accessible and transcription
is much easier. In this way, the chromatin accessibility can be characteri-
zed by nuclease hypersensitivity, which is directly measured by MNase,
DNase, FAIRE, as well as ATAC. Based on the Hi-C data, a mobility pro-
file is defined from GNM and has been found to be highly correlated with
DNase-seq and ATAC-seq values (Sauerwald et al., 2017). Essentially, the
mobility profile can be viewed as a characterization of flexibility properties
of the chromosome structures.

In the current paper, we propose a FRI based model for chromosome
flexibility analysis. Similar to biomolecular flexibility, we assume the rigi-
dity and flexibility of each loci is solely determined by its local packing
density. In this way, the rigidity index for each locus can be directly
evaluated by summarizing its connectivity with its local neighbours. The
connectivity strength between any two loci can be evaluated from its con-
tact frequency from the Hi-C matrix. The flexibility index is inversely
related to the rigidity index and can be used to characterize the chroma-
tin accessibility. Our flexibility model is validated by comparing with the
chromosome packing information from the chromatin accessibility. A high
correlation coefficient is found between our flexibility index, DNase-seq
and ATAC-seq values. Compared with GNM (Sauerwald et al., 2017), our
model is slightly more accurate with average 1%-2% increase in accuracy
and significantly more efficient in both computational time and resou-
rces. Moreover, interchromosome interaction can be incorporated into our
FRI model. As expected, the inclusion of the interchromosome interacti-
ons further enhances the performance of our model. Essentially, our FRI
model provides a direct link between the chromosome packing density
with chromosome flexibility.

2 Methods

2.1 Flexibility-rigidity index

Basic setting of flexibility-rigidity index The flexibility and rigidity pro-
perty of a systems is highly related to their inner network structure. We
consider a system of N -elements with coordinates {rj |rj ∈ R3, j =

1, 2, · · · , N}. The connectivity between the i-th and j-th element can be
characterized by a general correlation kernel Φ(‖ri−rj‖; ηij) satisfying,

Φ(‖ri − rj‖; ηij) = 1 as ‖ri − rj‖ → 0, (1)

Φ(‖ri − rj‖; ηij) = 0 as ‖ri − rj‖ → ∞. (2)
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The parameter ηij is a resolution parameter (or scale parameter). And
the correlation kernel can be chosen as any real-valued monotonically
decreasing radial basis function. The commonly used kernel functions (Xia
et al., 2013; Opron et al., 2014, 2015b) include generalized exponential
functions

Φ(‖ri − rj‖; ηij) = e−(‖ri−rj‖/ηij)
κ

, κ > 0, (3)

and generalized Lorentz functions,

Φ(‖ri − rj‖; ηij) =
1

1 + (‖ri − rij‖/ηj)υ
, υ > 0. (4)

For i-th element, the rigidity index µi is defined as the summation of
its connectivity with all other atoms,

µi =
∑
i6=j

wjΦ(‖ri − rj‖; ηij). (5)

Here the weight parameter wj is used to characterize the atom properties,
for example, it can be chosen as the atomic number. The flexility index is
inversely related to the rigidity index. For i-th element, the flexility index
fi is defined as,

fi =
1

µi
=

1∑
i6=j wjΦ(‖ri − rj‖; ηij)

. (6)

The flexibility index fi is linearly related to i-th B-factor,

Bti = afi + b, ∀i = 1, 2, · · · , N (7)

where {Bti} is the predicted B-factor. Linear regression model can be
used to determine the fitting parameter a and b. In biomolecular flexibility
analysis, a coarse-grainedCα representation is usually considered. In this
case, we can set the weight parameter wi = 1, i = 1, 2, ..., N and scale
parameter ηij = η, i, j = 1, 2, ..., N with η a fixed scale value. The fast
FRI (fFRI) model is proposed for modeling extremely large biomolecules
(Opron et al., 2014). Essentially, a cell list algorithm (Allen and Tildesley,
1987) is employed and the rigidity index in Eq. (5) is calculated between
atoms within a certain cut-off distance.

Rigidity function and flexibility function Mathematically, flexibility and
rigidity index are discrete values defined on atoms. They can be genera-
lized into continuous representations, i.e., flexibility function and rigidity
function (Xia et al., 2013; Opron et al., 2014). More specifically, the
rigidity function can be defined as follows,

µ(r) =

N∑
j=1

wjΦ(‖r− rj‖; ηij). (8)

Essentially, a continuous rigidity function can be viewed as a density distri-
bution and equals to Gaussian surface (Liu et al., 2015) when κ = 2 and
wi is chosen as the atomic number. A continuous flexibility function can
be defined in a similar way as the flexibility index,

F (r) =
1∑N

j=1 wjΦ(‖r− rj‖; ηij)
. (9)

It should be noticed that the flexibility function is well defined only in the
region when rigidity index is nonzero.

Multiscale flexibility-rigidity index For a system with a hierarchial stru-
cture and multiscale properties, a unique scale parameter value is usually
not suitable. Therefore, multiple correlation kernels with different scale
values are considered. The multiscale flexibility (Opron et al., 2015a) can
be generalized as follows,

fni =
1∑N

j=1 w
n
j Φn(‖ri − rj‖; ηnij)

, (10)

wherewnj , Φn(‖ri−rj‖; ηnij) and ηnij are quantities associated withn-th
kernel. The linear regression is used to minimize the objective function,

Minan,b

∑
i

∣∣∣∣∣∑
n

anfni + b−Bei

∣∣∣∣∣
2
 , (11)

where {Bei } are the experimental B-factors. Usually, for each kernel
function, a unique scale parameter η is used. The multiscale properties
can be well characterized by several different η values.

Multiscale weighted colored graph based FRI As a special case of graph
labeling, graph coloring is to assign labels (or "colors") to nodes or edges
of a graph under a certain rule or some constraints. In the weighted colored
graph model, a protein graph is labelled by its edge types and subgraphs
are defined according to these labels (Bramer and Wei, 2018). The atoms
in a protein structure are predominately from several atom types, including
carbon (C), nitrogen (N), oxygen (O), and sulfur (S). Hydrogen and ion
atoms (such as Mn2+,Mg2+,Fe2+,Zn2+, etc) are not considered due
to their absence from most PDB files. With this setting, all nodes in a
colored protein graph can be labeled by element in an atom set (C, N, O,
S) and all edges can be colored by element-specific pairs in a set (CC, CN,
CO, CS, NC, NN, NO, NS, OC, ON, OO, OS, SC, SN, SO, SS). It should be
noticed that edges in a colored protein graph are directed (Bramer and Wei,
2018). A CN pair is different from a NC pair in the colored graph model.
A subgraph contains only the same type of directed pairs. For example,
all NC pairs together form a subgraph. Further, these colored graphs are
combined with FRI models, particularly the mFRI, to evaluate the protein
B-factors. More specifically, if we are interested about flexility for all C

atoms, we can consider subgraphs made from CC, CN, CO and CS pairs.
For each subgraph, more than one scale values can be used. In this way, a
multiscale weighted colored graph based FRI model is constructed.

2.2 FRI based chromosome packing density analysis

2.2.1 Data processing
Hi-C data normalization One of the major challenges for Hi-C data analy-
sis is the systematic bias from the experimental setting that complicates
the interpretation of observed contact frequencies (Yaffe and Tanay, 2011;
Imakaev et al., 2012; Ay et al., 2014; Witten and Noble, 2012). Bias can be
introduced from procedures including crosslinking, chromatin fragmenta-
tion, biotin-labelling and religation. Particularly, systematic biases that can
substantially affect the Hi-C experimental results come from three major
sources (Yaffe and Tanay, 2011), including distance-between restriction
sites, the GC content and sequence mappability. Accounting for these bia-
ses is the first and most important step in C-data analysis. Various methods
have been proposed to remove these biases, including HiCNorm (Hu et al.,
2012), Vanilla-Coverage normalization (Rao et al., 2014a; Lieberman-
Aiden et al., 2009), iterative correction and eigenvector decomposition
(ICE) (Imakaev et al., 2012), Matrix-balancing method (Knight and Ruiz,
2013), etc. In this paper, we use the Vanilla-Coverage normalization.

Distance matrix construction To construct the chromosome three-
dimensional structure from the Hi-C data, computational models usually
employ a reciprocal function to describe the relation between interaction
frequency and spatial distance of two loci (Zhang et al., 2013; Boulos et al.,
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2013; Wang et al., 2013; Segal et al., 2014; Siahpirani et al., 2016; Filip-
pova et al., 2014; Imakaev et al., 2015; Lesne et al., 2014; Chen et al., 2016;
Tjong et al., 2016; Zhu et al., 2018). More specifically, it assumes that
the conversion between the contact frequency matrix U = {uij ; i, j =

1, 2, ..., N} and the distance matrix D = {dij ; i, j = 1, 2, ..., N} fol-
lows a power law distribution dij = 1/(uij)

α. The coefficient α is a
parameter called conversion factor, and dij and uij are the distance and
contact frequency between loci i and j, respectively. The relation can be
expressed as follows,

dij =


1

(uij)α
, uij > 0;

∞, uij = 0.
(12)

In this paper, we assume the conversion factor α = 1. Even though it is
unphysical to assume the spatial distance equals to infinity when a contact
frequency is zero, this definition works well for the kernel functions in our
FRI models.

2.2.2 Algorithm
We assume that the interaction between two loci in a chromosome structure
can be characterized by the general correlation kernel as in Eqs. (1) and (2).
We assume all loci have similar properties, thus wij = 1 and ηij = η.
The value of scale parameter η are linearly related to the locus resolu-
tion. Generally, a small η value is used in modeling high resolution data,
whereas a large scale value in modeling low resolution ones. As shown in
Algorithm 1, the process of chromosome flexibility analysis includes four
components: normalizing the Hi-C data; transfering Hi-C contact freque-
ncy to relative distance; calculating the chromosome rigidity; calculating
the chromosome flexibility.

Algorithm 1 Chromosome flexibility analysis with FRI
Input: Hi-C data
Output: Chromosome flexibility of each locus
Pre-processing: Normalize the Hi-C data with the Vanilla-Coverage
model;

Step 1: Transfer Hi-C contact frequency to relative distance. We
use conversion factor α = 1. That is if the contact frequency between
i-th and j-th locus isuij , the relative distance between them is dij = 1

uij
;

Step 2: Calculate the chromosome rigidity. The generalized Gaussian
kernel is used, ui =

∑
j e
−(dij/η(s))

κ

. In our simulation, we always
set κ = 1. The scale parameter η(s) is linearly related to Hi-C data
resolution. More specifically, we set η as 5.0 ∗ 10−4, 2.0 ∗ 10−4, and
1.0 ∗ 10−4 for resolution 100kb, 50kb, and 25kb, respectively;

Step 3: Calculate the chromosome flexibility. That is fi = 1
ui

.

3 Results and discussions

3.1 Data Description

To evaluate the performance of our FRI models, we consider the Hi-C
dataset for GM12878 and IMR90 cell line with GEO accession number
GSE63525 from Rao’s paper (Rao et al., 2014b). GM12878 is a lympho-
blastoid cell line produced from the blood. IMR90 is a cell line derived from
human foetal lung. We also evaluate the Spearman correlation coeffici-
ent (SCC) between chromosome flexibility and chromosome accessibility
measurements, including Dnase and ATAC. The DNase-seq data are obtai-
ned from ENCODE project. The ATAC-seq data is obtained from GEO
database (GEO accessions GSM1155959 for GM12878 and GSM1418975

for IMR90). For both experimental datasets, bed-formatted peak files are
used. We bin the data into the same resolution as used in the Hi-C data
by adding all peak values within each locus. The binned data were then
smoothed using moving average with a window size of 200 kb in the same
way as GNM (Sauerwald et al., 2017).

3.2 FRI based chromosome flexibility analysis

As stated in the introduction, there is a strong correlation between chro-
mosome packing density, accessibility and flexibility. To illustrate their
relations, we consider two 5kb resolution Hi-C chromosome data from
GM12878. Chromosome packing density is measured by chromosome
flexibility index from our FRI. Chromatin accessibility is characterized
by DNase-seq and ATAC-seq values (Sauerwald et al., 2017). After the
normalization of DNase-seq and ATAC-seq data, flexibility index is line-
arly fitted with their values. The results are demonstrated in Figure 1. For
DNase-seq, it can be seen that there is a very good agreement between the
predicted values and experimental ones. For ATAC-seq, the results are not
as good as DNase-seq models. But a comparably good agreement is still
observed. To further evaluate our model, we consider all the 23 chromoso-
mes from GM12878 and IMR90, and calculate the Spearman correlation
coefficient (SCC) between experimental results and theoretical predicti-
ons. The resolution of the Hi-C data is 25kb. Figures 2 and 3 demonstrate
the SCCs for cell lines GM12878 and IMR90, respectively. The results for
DNase-seq and ATAC-seq are listed in subfigures (a) and (b). In DNase-
seq models, the average SCCs of all 23 chromosomes for GM12878 and
IMR90 are 0.860 and 0.847 respectively. In ATAC-seq models, the average
SCCs for GM12878 and IMR90 are 0.633 and 0.674 . To avoid confu-
sion, the parameter values of κ and η in our FRI model are set as 1.0 and
5.0 ∗ 10−4 for GM12878, 1.0 and 3.0 ∗ 10−3 for IMR90, respectively.

Fig. 1. The illustration of the correlation between chromosome flexibility and chromatin
accessibility. Two Hi-C data with resolution 5kb for chromosomes 20 (a, b) and 16 (c, d)
of GM12878 are considered. The chromosome flexibility (red line) is calculated from our
FRI model. The chromatin accessibility (blue color) is measured by DNase-seq (a, c) and
ATAC-seq (b, d).

Currently, GNM is the only method that has been used to predict the
chromatin accessibility from Hi-C data (Sauerwald et al., 2017), to the
best of our knowledge. In GNM, a mobility profile is generated from each
chromosome. It is found that the mobility profile is linearly related to
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chromatin accessibility characterized by DNase-seq and ATAC-seq data.
Larger mobility profile values indicate higher accessibility, whereas smal-
ler values are associated with lower accessibility (Sauerwald et al., 2017).
Essentially, the mobility profile from GNM is similar to flexibility index
in our FRI. To compare the performance of FRI and GNM in chromatin
accessibility analysis, we calculate the SCCs for all 23 chromosomes in
GM12878 and IMR90 using the GNM codes (Sauerwald et al., 2017). The
corresponding results from GNM are listed in Figures 2 and 3. It can be
observed that, in nearly all the chromosome cases, SCCs from our FRI
are higher than those from GNM in both DNase-seq and ATAC-seq. More
specifically, in DNase-seq models, the average GNM (FRI) SCCs of all
23 chromosomes for GM12878 and IMR90 are 0.838 (0.860) and 0.833
(0.847), respectively. In ATAC-seq models, the average GNM (FRI) SCCs
for GM12878 and IMR90 are 0.618 (0.633) and 0.667 (0.674). We can see
that the average SCCs of FRI method are around 1% to 2% higher than
GNM method in both DNase-seq and ATAC-seq.

Fig. 2. SCCs between chromosome flexibility and chromatin accessibility for GM12878
cell line. (a) SCCs of FRI (orange bar) and GNM (blue bar) for DNase-seq data. (b) SCCs
of FRI (orange bar) and GNM (blue bar) for ATAC-seq data.

Fig. 3. SCCs between chromosome flexibility and chromatin accessibility for IMR90 cell
line. (a) SCCs of FRI (orange bar) and GNM (blue bar) for DNase-seq data. (b) SCCs of
FRI (orange bar) and GNM (blue bar) for ATAC-seq data.

Fig. 4. Average SCCs between chromosome flexibility and chromatin accessibility for all
chromosomes from GM12878 cell line. (a) Average SCCs of FRI (orange bar) and GNM
(blue bar) for ATAC-seq data. (b) Average SCCs of FRI (orange bar) and GNM (blue bar)
for DNase-seq data.

3.3 Robustness of FRI for chromosome flexibility analysis

In the above section, we only consider the Hi-C data with resolution of
25kb. To further test robustness of FRI method, we consider the Hi-C data
from the GM12878 cell line in different resolutions, i.e., 50kb and 100kb.
Correspondingly, scale parameter η is set as 2.0 ∗ 10−4 and 1.0 ∗ 10−4,
respectively. The SCCs are calculated for both ATAC-seq and DNase-seq
data. The results are illustrated in Figure 4(a) and Figure 4(b). The GNM
results are also listed for comparison. Consistent with the above results,
our predictions are highly accurate and is constantly better than GNM.
Interestingly, the accuracy of both models increases with the resolution.

Fig. 5. SCCs of FRI with inter-chromosome interactions for GM12878 cell line. (a) SCCs
of FRI (orange bar) and GNM (blue bar) for DNase-seq data. (b) SCCs of FRI (orange bar)
and GNM (blue bar) for ATAC-seq data.

3.4 Effect of inter-chromosome interactions on
chromosome flexibility

Both intra-chromosome and inter-chromosome interactions have a great
impact on the chromosome packing density, thus directly influence chro-
mosome flexibility. However, the consideration of the inter-chromosome
information will dramatically increase the computational costs, especi-
ally when matrix operations are involved. Therefore, it is prohibitively
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expensive for GNM to incorporate the effect of inter-chromosome intera-
ctions (Sauerwald et al., 2017). Since FRI method involves only simple
algebraic operations, it brings great promise to tackle the challenge from
inter-chromosome interactions.

The Hi-C data from GM12878 with resolution 100kb is used. These are
the highest resolution data with inter-chromosome interactions that we can
obtain. Figure 5 demonstrates the SCCs between chromosome flexibility
and chromatin accessibility for DNase-seq (a) and ATAC-seq (b). Two situ-
ations are considered for comparison. One is with only intra-chromosome
interactions and the other is with both intra- and inter-chromosome intera-
ctions. It can be seen clearly that the incorporate of the inter-chromosome
information can further increase the accuracy of our chromosome flexibi-
lity model. For DNase-seq, the average SCC is 0.832 for both intra and
inter case and it is 0.02 higher than the intra model (0.831). For ATAC-seq,
the average SCC is 0.587 for both intra and inter case and it is 0.01 higher
than the intra model (0.586).

3.5 Algorithm efficiency comparison between FRI and
GNM on chromosome flexibility analysis

A significant advantage of FRI over all previous models in flexility analysis
is its great efficiency and low computational cost. To compare the algori-
thm efficiency for FRI and GNM in chromosome flexibility analysis, we
measure running times for all 23 chromosomes from GM12878 cell line.
Both FRI and GNM are implemented with MATLAB. A linux server with
Xeon(R) E5-2690 CPU (2.60GHz) and 512 GB memory is used.

Different resolutions (5kb, 25kb, 50kb, 100kb and 250kb) are con-
sidered and results are listed in Figure 6. Here the values represent the
total computational time for all 23 chromosomes together. It can be seen
clearly that FRI method is much more efficient than GNM method. For all
resolutions, the running time of FRI is significantly less than that of GNM.
Previously in GNM, it takes about 1.5 hour per chromosome at 5kb reso-
lution using 10 CPUs (Sauerwald et al., 2017). In contrast, it only costs
FRI several minutes on a single CPU. These results are consistent with the
model complexity (Xia et al., 2013; Opron et al., 2014). Essentially, FRI
uses only simply algebraic operations, whereas GNM requires not only
matrix operations but also eigenvalue decomposition.

Fig. 6. Running time of GNM and FRI on 23 chromosomes. The Hi-C data in different
resolutions are considered. A significant reduce of the computational time in FRI can be
clearly observed.

4 Conclusion
In this paper, the flexibility and rigidity index (FRI) model is introdu-
ced for the first time to analyze the chromosome packing, flexibility and
dynamics. We evaluate the flexibility index for each locus. It is found that

the flexibility index can be used to characterize the chromosome flexibi-
lity. A high correlation is found between our chromosome flexibility and
accessibility measurements, including DNase and ATAC. Compared with
the Gaussian network model (GNM), FRI is not only more accurate, but
also significantly more efficient in both computational times and costs.
Moreover, FRI can incorporate the inter-chromosome information into the
flexibility evaluation, thus further enhance the model accuracy.

Acknowledgements
The author Kelin Xia would like to thank Amartya Sanyal for his
introduction and discussion of Hi-C experiments and data analysis.

Funding
This work was supported in part by Nanyang Technological University
Startup Grant M4081842.110, Singapore Ministry of Education Academic
Research fund Tier 1 M401110000, National Natural Science Foundation
of China (Grant No. 61702421, 61332014, 61772426).

References
Allen, M. P. and Tildesley, D. J. (1987). Computer Simulation of Liquids. Oxford:

Clarendon Press.
Ay, F., Bailey, T. L., and Noble, W. S. (2014). Statistical confidence estimation for hi-c

data reveals regulatory chromatin contacts. Genome research, 24(6), 999–1011.
Baù, D., Sanyal, A., Lajoie, B. R., Capriotti, E., Byron, M., Lawrence, J. B., Dekker,

J., and Marti-Renom, M. A. (2011). The three-dimensional folding of the α-
globin gene domain reveals formation of chromatin globules. Nature structural &
molecular biology, 18(1), 107–114.

Bonev, B. and Cavalli, G. (2016). Organization and function of the 3D genome.
Nature Reviews Genetics, 17(11), 661–678.

Boulos, R. E., Arneodo, A., Jensen, P., and Audit, B. (2013). Revealing long-
range interconnected hubs in human chromatin interaction data using graph theory.
Physical review letters, 111(11), 118102.

Bramer, D. and Wei, G.-W. (2018). Multiscale weighted colored graphs for protein
flexibility and rigidity analysis. The Journal of chemical physics, 148(5), 054103.

Chen, J., Hero, A. O., and Rajapakse, I. (2016). Spectral identification of topological
domains. Bioinformatics, pages 1–7.

de Wit, E. and de Laat, W. (2012). A decade of 3C technologies: insights into nuclear
organization. Genes & development, 26(1), 11–24.

Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome
conformation. science, 295(5558), 1306–1311.

Dekker, J., Belmont, A. S., Guttman, M., Leshyk, V. O., Lis, J. T., Lomvardas, S.,
Mirny, L. A., O’shea, C. C., Park, P. J., Ren, B., et al. (2017). The 4D nucleome
project. Nature, 549(7671), 219.

Demerdash, O. N. A. and Mitchell, J. C. (2012). Density-cluster NMA: A
new protein decomposition technique for coarse-grained normal mode analysis.
Proteins:Structure Function and Bioinformatics, 80(7), 1766–1779.

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S.,
and Ren, B. (2012). Topological domains in mammalian genomes identified by
analysis of chromatin interactions. Nature, 485(7398), 376–380.

Emekli, U., Dina, S., Wolfson, H., Nussinov, R., and Haliloglu, T. (2008). HingeProt:
automated prediction of hinges in protein structures. Proteins, 70(4), 1219–1227.

Filippova, D., Patro, R., Duggal, G., and Kingsford, C. (2014). Identification of
alternative topological domains in chromatin. Algorithms for Molecular Biology,
9(1), 14.

Flores, S. and Gerstein, M. (2007). FlexOracle: predicting flexible hinges by
identification of stable domains. BMC bioinformatics, 8(1).

Flores, S., Lu, L., Yang, J., Carriero, N., and Gerstein, M. (2007). Hinge atlas:
relating protein sequence to sites of structural flexibility. BMC bioinformatics, 8.

Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov,
Y. L., Velkov, S., Ho, A., Mei, P. H., et al. (2009). An oestrogen-receptor-α-bound
human chromatin interactome. Nature, 462(7269), 58–64.

Halle, B. (2002). Flexibility and packing in proteins. PNAS, 99, 1274–1279.
Hinsen, K. (2008). Structural flexibility in proteins: impact of the crystal environment.

Bioinformatics, 24, 521 – 528.
Hu, M., Deng, K., Selvaraj, S., Qin, Z. H., Ren, B., and Liu, J. S. (2012). HiCNorm:

removing biases in Hi-C data via Poisson regression. Bioinformatics, 28(23),
3131–3133.

Hu, M., Deng, K., Qin, Z. H., Dixon, J., Selvaraj, S., Fang, J., Ren, B., and Liu,
J. S. (2013). Bayesian inference of spatial organizations of chromosomes. PLoS
Comput Biol, 9(1), e1002893.

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 22, 2018. ; https://doi.org/10.1101/374132doi: bioRxiv preprint 

https://doi.org/10.1101/374132


“fri_hic_v4” — 2018/7/20 — page 7 — #7

short Title 7

Huang, S. W., Shih, C. H., Lin, C. P., and Hwang, J. K. (2008). Prediction of
nmr order parameters in proteins using weighted protein contact-number model.
Theoretical Chemistry Accounts, 121(3-4), 197–200.

Imakaev, M., Fudenberg, G., McCord, R. P., Naumova, N., Goloborodko, A., Lajoie,
B. R., Dekker, J., and Mirny, L. A. (2012). Iterative correction of Hi-C data reveals
hallmarks of chromosome organization. Nature methods, 9(10), 999–1003.

Imakaev, M. V., Fudenberg, G., and Mirny, L. A. (2015). Modeling chromosomes:
Beyond pretty pictures. FEBS letters, 589(20PartA), 3031–3036.

Jin, F., Li, Y., Dixon, J. R., Selvaraj, S., Ye, Z., Lee, A. Y., Yen, C. A., Schmitt,
A. D., Espinoza, C. A., and Ren, B. (2013). A high-resolution map of the three-
dimensional chromatin interactome in human cells. Nature, 503(7475), 290–294.

Keating, K. S., Flores, S. C., Gerstein, M. B., and Kuhn, L. A. (2009). StoneHinge:
hinge prediction by network analysis of individual protein structures. Protein
Science, 18(2), 359–371.

Knight, P. A. and Ruiz, D. (2013). A fast algorithm for matrix balancing. IMA
Journal of Numerical Analysis, 33(3), 1029–1047.

Kondrashov, D. A., Van Wynsberghe, A. W., Bannen, R. M., Cui, Q., and Phil-
lips, J. G. N. (2007). Protein structural variation in computational models and
crystallographic data. Structure, 15, 169 – 177.

Kundu, S., Melton, J. S., Sorensen, D. C., and Phillips, J. G. N. (2002). Dynamics
of proteins in crystals: comparison of experiment with simple models. Biophys. J.,
83, 723 – 732.

Lesne, A., Riposo, J., Roger, P., Cournac, A., and Mozziconacci, J. (2014). 3D
genome reconstruction from chromosomal contacts. Nature methods, 11(11),
1141–1143.

Lévy-Leduc, C., Delattre, M., Mary-Huard, T., and Robin, S. (2014). Two-
dimensional segmentation for analyzing Hi-C data. Bioinformatics, 30(17),
i386–i392.

Li, D. W. and Brüschweiler, R. (2009). All-atom contact model for understan-
ding protein dynamics from crystallographic b-factors. Biophysical journal, 96(8),
3074–3081.

Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T.,
Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., et al. (2009).
Comprehensive mapping of long-range interactions reveals folding principles of
the human genome. science, 326(5950), 289–293.

Lin, C. P., Huang, S. W., Lai, Y. L., Yen, S. C., Shih, C. H., Lu, C. H., Huang, C. C.,
and Hwang, J. K. (2008). Deriving protein dynamical properties from weighted
protein contact number. Proteins: Structure, Function, and Bioinformatics, 72(3),
929–935.

Liu, T. T., Chen, M. X., and Lu, B. Z. (2015). Parameterization for molecular
Gaussian surface and a comparison study of surface mesh generation. Journal of
molecular modeling, 21(5), 113.

Nagano, T., Lubling, Y., Stevens, T. J., Schoenfelder, S., Yaffe, E., Dean, W.,
Laue, E. D., Tanay, A., and Fraser, P. (2013). Single-cell Hi-C reveals cell-to-cell
variability in chromosome structure. Nature, 502(7469), 59–64.

Nguyen, D. D., Xia, K. L., and Wei, G. W. (2016). Generalized flexibility-rigidity
index. Journal of Chemical Physics, 144, 234106.

Nguyen, D. D., Xiao, T., Wang, M. L., and Wei, G. W. (2017). Rigidity strengthening:
A mechanism for protein–ligand binding. Journal of chemical information and
modeling, 57(7), 1715–1721.

Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N.,
Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J., et al. (2012). Spatial partitioning
of the regulatory landscape of the X-inactivation centre. Nature, 485(7398), 381–
385.

Opron, K., Xia, K. L., and Wei, G. W. (2014). Fast and anisotropic flexibility-rigidity
index for protein flexibility and fluctuation analysis. Journal of Chemical Physics,
140, 234105.

Opron, K., Xia, K. L., and Wei, G. (2015a). Communication: Capturing protein
multiscale thermal fluctuations. The Journal of chemical physics, 142(21), 211101.

Opron, K., Xia, K. L., and Wei, G. W. (2015b). Communication: Capturing protein
multiscale thermal fluctuations. Journal of Chemical Physics, 142(211101).

Park, J. K., Jernigan, R., and Wu, Z. (2013). Coarse grained normal mode analysis
vs. refined gaussian network model for protein residue-level structural fluctuations.
Bulletin of Mathematical Biology, 75, 124 –160.

Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D.,
Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., et al.
(2014a). A 3D map of the human genome at kilobase resolution reveals principles
of chromatin looping. Cell, 159(7), 1665–1680.

Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D.,
Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., et al.

(2014b). A 3d map of the human genome at kilobase resolution reveals principles
of chromatin looping. Cell, 159(7), 1665–1680.

Sauerwald, N., Zhang, S., Kingsford, C., and Bahar, I. (2017). Chromosomal dyna-
mics predicted by an elastic network model explains genome-wide accessibility
and long-range couplings. Nucleic acids research, 45(7), 3663–3673.

Schmitt, A. D., Hu, M., and Ren, B. (2016a). Genome-wide mapping and analysis
of chromosome architecture. Nature reviews Molecular cell biology, 17(12), 743.

Schmitt, A. D., Hu, M., and Ren, B. (2016b). Genome-wide mapping and analysis of
chromosome architecture. Nature Reviews Molecular Cell Biology, 17, 743–755.

Segal, M. R., Xiong, H., Capurso, D., Vazquez, M., and Arsuaga, J. (2014). Repro-
ducibility of 3d chromatin configuration reconstructions. Biostatistics, 15(3),
442–456.

Shatsky, M., Nussinov, R., and Wolfson, H. J. (2004). FlexProt: alignment of
flexible protein structures without a predefinition of hinge regions. Journal of
Computational Biology, 11(1), 83–8106.

Siahpirani, A. F., Ay, F., and Roy, S. (2016). A multi-task graph-clustering approach
for chromosome conformation capture data sets identifies conserved modules of
chromosomal interactions. Genome biology, 17(1), 114.

Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., De Wit, E.,
Van Steensel, B., and De Laat, W. (2006). Nuclear organization of active and ina-
ctive chromatin domains uncovered by chromosome conformation capture–on-chip
(4C). Nature genetics, 38(11), 1348–1354.

Song, G. and Jernigan, R. L. (2007). vgnm: a better model for understanding the
dynamics of proteins in crystals. J. Mol. Biol., 369(3), 880 – 893.

Tama, F., Gadea, F. X., Marques, O., and Sanejouand, Y. H. (2000). Building-
block approach for determining low-frequency normal modes of macromolecules.
Proteins: Structure, Function, and Bioinformatics, 41(1), 1–7.

Tjong, H., Li, W., Kalhor, R., Dai, C., Hao, S., Gong, K., Zhou, Y., Li, H., Zhou,
X. J., Le Gros, M. A., et al. (2016). Population-based 3D genome structure analysis
reveals driving forces in spatial genome organization. Proceedings of the National
Academy of Sciences, 113(12), E1663–E1672.

Wang, H., Duggal, G., Patro, R., Girvan, M., Hannenhalli, S., and Kingsford, C.
(2013). Topological properties of chromosome conformation graphs reflect spatial
proximities within chromatin. In Proceedings of the International Conference on
Bioinformatics, Computational Biology and Biomedical Informatics, page 306.
ACM.

Witten, D. M. and Noble, W. S. (2012). On the assessment of statistical significance
of three-dimensional colocalization of sets of genomic elements. Nucleic acids
research, 40(9), 3849âŁ“–3855.

Xia, K. L. and Wei, G. W. (2016). A review of geometric, topological and graph
theory apparatuses for the modeling and analysis of biomolecular data. arXiv
preprint arXiv:1612.01735.

Xia, K. L., Opron, K., and Wei, G. W. (2013). Multiscale multiphysics and mul-
tidomain models - Flexibility and Rigidity. Journal of Chemical Physics, 139,
194109.

Xia, K. L., Li, Z. M., and Mu, L. (2018). Multiscale persistent functions for bio-
molecular structure characterization. Bulletin of mathematical biology, 80(1),
1–31.

Yaffe, E. and Tanay, A. (2011). Probabilistic modeling of Hi-C contact maps elimi-
nates systematic biases to characterize global chromosomal architecture. Nature
genetics, 43(11), 1059–1065.

Zhang, B. and Wolynes, P. G. (2015). Topology, structures, and energy landscapes of
human chromosomes. Proceedings of the National Academy of Sciences, 112(19),
6062–6067.

Zhang, F. L. and Brüschweiler, R. (2002). Contact model for the prediction of nmr nh
order parameters in globular proteins. Journal of the American Chemical Society,
124(43), 12654–12655.

Zhang, Z. Z., Li, G. L., Toh, K. C., and Sung, W. K. (2013). 3D chromosome modeling
with semi-definite programming and Hi-C data. Journal of computational biology,
20(11), 831–846.

Zhao, Z. H., Tavoosidana, G., Sjölinder, M., Göndör, A., Mariano, P., Wang, S.,
Kanduri, C., Lezcano, M., Sandhu, K. S., Singh, U., et al. (2006). Circular
chromosome conformation capture (4C) uncovers extensive networks of epigene-
tically regulated intra-and interchromosomal interactions. Nature genetics, 38(11),
1341–1347.

Zhu, G., Deng, W., Hu, H., Ma, R., Zhang, S., Yang, J., Peng, J., Kaplan, T., and
Zeng, J. (2018). Reconstructing spatial organizations of chromosomes through
manifold learning. Nucleic acids research, 46(8), e50–e50.

author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not certified by peer review) is thethis version posted July 22, 2018. ; https://doi.org/10.1101/374132doi: bioRxiv preprint 

https://doi.org/10.1101/374132

