Skip to main content
Log in

A framework combines supervised learning and dense subgraphs discovery to predict protein complexes

  • Research Article
  • Published:
Frontiers of Computer Science Aims and scope Submit manuscript

Abstract

Rapidly identifying protein complexes is significant to elucidate the mechanisms of macromolecular interactions and to further investigate the overlapping clinical manifestations of diseases. To date, existing computational methods majorly focus on developing unsupervised graph clustering algorithms, sometimes in combination with prior biological insights, to detect protein complexes from protein-protein interaction (PPI) networks. However, the outputs of these methods are potentially structural or functional modules within PPI networks. These modules do not necessarily correspond to the actual protein complexes that are formed via spatiotemporal aggregation of subunits. In this study, we propose a computational framework that combines supervised learning and dense subgraphs discovery to predict protein complexes. The proposed framework consists of two steps. The first step reconstructs genome-scale protein co-complex networks via training a supervised learning model of l2-regularized logistic regression on experimentally derived co-complexed protein pairs; and the second step infers hierarchical and balanced clusters as complexes from the co-complex networks via effective but computationally intensive k-clique graph clustering method or efficient maximum modularity clustering (MMC) algorithm. Empirical studies of cross validation and independent test show that both steps achieve encouraging performance. The proposed framework is fundamentally novel and excels over existing methods in that the complexes inferred from protein co-complex networks are more biologically relevant than those inferred from PPI networks, providing a new avenue for identifying novel protein complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Krogan N J, Peng W, Cagney G, Robinson M D, Haw R, Zhong G, et al. High-definition macromolecular composition of yeast RNA-processing complexes. Molecular Cell, 2004, 13(2): 225–239

    Article  Google Scholar 

  2. Lage K, Karlberg E O, Størling Z M, Olason P I, Pedersen A G, Rigina O, et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature Biotechnology, 2007, 25(3): 309–316

    Article  Google Scholar 

  3. Mewes H W, Amid C, Arnold R, Frishman D, Güldener U, Mannhaupt G, et al. MIPS: analysis and annotation of proteins from whole genomes. Nucleic Acids Research, 2004, 32(suppl_1): D41–D44

    Article  Google Scholar 

  4. Ruepp A, Waegele B, Lechner M, Brauner B, Dunger-Kaltenbach, Fobo G, et al. CORUM: the comprehensive resource of mammalian protein complexes—2009. Nucleic Acids Research, 2010, 38(suppl_4): D497–D501

    Article  Google Scholar 

  5. Keshava Prasad T S, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, et al. Human Protein Reference Database—2009 update. Nucleic Acids Research, 2009, 37(suppl_1): D767–D772

    Article  Google Scholar 

  6. Li X, Wu M, Kwoh C K, Ng S K. Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics, 2010, 11(1): 1–19

    Google Scholar 

  7. Srihari S, Yong C H, Patil A, Wong L. Methods for protein complex prediction and their contributions towards understanding the organisation, function and dynamics of complexes. FEBS Letters, 2015, 589(19): 2590–2602

    Article  Google Scholar 

  8. Zahiri J, Emamjomeh A, Bagheri S, Ivazeh A, Mahdevar G, Sepasi H, et al. Protein complex prediction: a survey. Genomics, 2020, 112(1): 174–183

    Article  Google Scholar 

  9. Bron C, Kerbosch J. Finding all cliques of an undirected graph. Communications of the ACM, 1973, 16(9): 575–580

    Article  MATH  Google Scholar 

  10. Bader G, Hogue C. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(1): 1–27

    Article  Google Scholar 

  11. Van Dongen S. Graph clustering by flow simulation. University of Utrecht, 2000

  12. Nepusz T, Yu H, Paccanaro A. Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods, 2012, 9(5): 471–472

    Article  Google Scholar 

  13. Pellegrini M, Baglioni M, Geraci F. Protein complex prediction for large protein protein interaction networks with the Core&Peel method. BMC Bioinformatics, 2016, 17(12): 37–58

    Google Scholar 

  14. Hernandez C, Mella C, Navarro G, Olivera-Nappa A, Araya J. Protein complex prediction via dense subgraphs and false positive analysis. PLoS ONE, 2017, 12: e0183460

    Article  Google Scholar 

  15. Wu M, Xie Z, Li X, Kwoh C K, Zheng J. Identifying protein complexes from heterogeneous biological data. Proteins, 2013, 81(11): 2023–2033

    Article  Google Scholar 

  16. Gavin A C, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 2006, 440(7084): 631–636

    Article  Google Scholar 

  17. Geva G, Sharan R. Identification of protein complexes from coimmunoprecipitation data. Bioinformatics, 2011, 27(1): 111–117

    Article  Google Scholar 

  18. Krogan N J, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 2006, 440(7084): 637–643

    Article  Google Scholar 

  19. Qi Y, Balem F, Faloutsos C, Klein-Seetharaman J, Bar-Joseph Z. Protein complex identification by supervised graph local clustering. Bioinformatics, 2008, 24(13): i250–i268

    Article  Google Scholar 

  20. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The Reactome pathway Knowledgebase. Nucleic Acids Research, 2016, 44(D1): D481–D487

    Article  Google Scholar 

  21. Wu G, Feng X, Stein L. A human functional protein interaction network and its application to cancer data analysis. Genome Biology, 2010, 11(5): 1–23

    Article  Google Scholar 

  22. Chatr-Aryamontri A, Breitkreutz B J, Oughtred R, Boucher L, Heinicke S, Chen D, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Research, 2015, 43(D1): D470–D478

    Article  Google Scholar 

  23. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F, et al. The MIntAct project–IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Research, 2014, 42(D1): D358–D363

    Article  Google Scholar 

  24. Collins S R, Kemmeren P, Zhao X C, Greenblatt J F, Spencer F, Holstege F C, et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Molecular & Cellular Proteomics, 2007, 6(3): 439–450

    Article  Google Scholar 

  25. Yu H, Braun P, Yildirim M A, Lemmens I, Venkatesan K, Sahalie J, et al. High-quality binary protein interaction map of the yeast interactome network. Science, 2008, 322(5898): 104–110

    Article  Google Scholar 

  26. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of The United States of America, 2001, 98(8): 4569–4574

    Article  Google Scholar 

  27. Uetz P, Giot L, Cagney G, Mansfield T A, Judson R S, Knight J R, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770): 623–627

    Article  Google Scholar 

  28. Pu S, Wong J, Turner B, Cho E, Wodak S J. Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 2009, 37(3): 825–831

    Article  Google Scholar 

  29. Maetschke S, Simonsen M, Davis M, Ragan M A. Gene ontology-driven inference of protein-protein interactions using inducers. Bioinformatics, 2012, 28(1): 69–75

    Article  Google Scholar 

  30. Qi Y, Tastan O, Carbonell J G, Klein-Seetharaman J, Weston J. Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins. Bioinformatics, 2010, 26(18): i645–i652

    Article  Google Scholar 

  31. Mei S, Zhu H. A novel one-class SVM based negative data sampling method for reconstructing proteome-wide HTLV-human protein interaction networks. Scientific Reports, 2015, 5: 8034

    Article  Google Scholar 

  32. Mei S. In silico enhancing M. tuberculosis protein interaction networks in STRING to predict drug-resistance pathways and pharmacological risks. Journal of Proteome Research, 2018, 17(5): 1749–1760

    Article  Google Scholar 

  33. Mei S, Flemington E K, Zhang K. Transferring knowledge of bacterial protein interaction networks to predict pathogen targeted human genes and immune signaling pathways: a case study on M. tuberculosis. BMC Genomics, 2018, 19(1): 1–21

    Article  Google Scholar 

  34. Altschul S F, Madden T L, Schäffer A A, Zhang J, Zhang Z. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 1997, 25(17): 3389–3402

    Article  Google Scholar 

  35. Boeckmann B, Bairoch A, Apweiler R, Blatter M C, Estreicher A, Gasteiger E, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Research, 2003, 31(1): 365–370

    Article  Google Scholar 

  36. Barrell D, Dimmer E, Huntley R P, Binns D, O’Donovan C, Apweiler R, et al. The GOA database in 2009–an integrated gene ontology annotation resource. Nucleic Acids Research, 2009, 37(D1): D396–D403

    Article  Google Scholar 

  37. Yu F, Huang F, Lin C. Dual coordinate descent methods for logistic regression and maximum entropy models. Machine Learning, 2011, 85: 41–75

    Article  MathSciNet  MATH  Google Scholar 

  38. Fan R, Chang K, Hsieh C, Wang X, Lin C. LIBLINEAR: a library for large linear classification. Machine Learning Research, 2008, 9(2): 1871–1874

    MATH  Google Scholar 

  39. Palla G, Derényi I, Farkas I, Vicsek T. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 2005, 435(7043): 814–818

    Article  Google Scholar 

  40. Adamcsek B, Palla G, Farkas I J, Derényi I, Vicsek T. CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics, 2006, 22(8): 1021–1023

    Article  Google Scholar 

  41. Noack A, Rotta R. Multi-level algorithms for modularity clustering. In: Proceedings of the 8th International Symposium on Experimental Algorithms. 2009, 257–268

  42. Rossi F, Villa-Vialaneix N. Représentation d’un grand réseau à partir d’une classification hiérarchique de ses sommets. Journal de la Société Française de Statistique, 2011, 152: 34–65

    MathSciNet  MATH  Google Scholar 

  43. Newman M E. Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 2006, 74: 036104

    Article  MathSciNet  Google Scholar 

  44. Zhang L V, Wong S L, King O D, Roth F P. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics, 2004, 5(1): 1–15

    Article  Google Scholar 

  45. Qiu J, Noble W S. Predicting co-complexed protein pairs from heterogeneous data. PLoS Computational Biology, 2008, 4(4): e1000054

    Article  MathSciNet  Google Scholar 

  46. Kikugawa S, Nishikata K, Murakami K, Sato Y, Suzuki M, Altaf-Ul-Amin M, et al. PCDq: human protein complex database with quality index which summarizes different levels of evidences of protein complexes predicted from H-Invitational protein-protein interactions integrative dataset. BMC Systems Biology, 2012, 6(Suppl 2): S7

    Article  Google Scholar 

  47. Romero-Molina S, Ruiz-Blanco Y B, Harms M, Münch J, Sanchez-Garcia E. PPI-Detect: a support vector machine model for sequence-based prediction of protein-protein interactions. Journal of Computational Chemistry, 2019, 40(11): 1233–1242

    Article  Google Scholar 

  48. Chen M, Ju C J, Zhou G, Chen X, Zhang T, Chang K W, et al. Multifaceted protein-protein interaction prediction based on Siamese residual RCNN. Bioinformatics, 2019, 35(14): i305–i314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyu Mei.

Additional information

Supporting information

The supporting information is available online at journal.hep.com.cn and link.springer.com..

Suyu Mei received his PhD in computer science from Fudan University, China. His research fields cover machine learning and bioinformatics. He further conducted postdoctoral research of computational biology in Southern Medical University, China. His research topics focused on studying pathogen-host signaling cross-talks and systems pharmacology. He has published more than 20 first-authored papers in international peer-review journals. His current research topics cover the studies of plant and soil microbiome, microbial ecology and human microbiome-associated diseases via microbiomics and machine learning approaches.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, S. A framework combines supervised learning and dense subgraphs discovery to predict protein complexes. Front. Comput. Sci. 16, 161901 (2022). https://doi.org/10.1007/s11704-021-0476-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11704-021-0476-8

Keywords