
FragDPI: a novel drug-protein interaction prediction model based
on fragment understanding and unified coding

Zhihui YANG, Juan LIU (✉), Xuekai ZHU, Feng YANG, Qiang ZHANG, Hayat Ali SHAH
Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan 430072, china

 Higher Education Press 2023

 
Abstract    Prediction  of  drug-protein  binding  is  critical  for
virtual drug screening. Many deep learning methods have been
proposed  to  predict  the  drug-protein  binding  based  on  protein
sequences  and  drug  representation  sequences.  However,  most
existing  methods  extract  features  from  protein  and  drug
sequences  separately.  As  a  result,  they  can  not  learn  the
features  characterizing  the  drug-protein  interactions.  In
addition,  the  existing  methods  encode  the  protein  (drug)
sequence usually based on the assumption that each amino acid
(atom)  has  the  same  contribution  to  the  binding,  ignoring
different  impacts  of  different  amino  acids  (atoms)  on  the
binding.  However,  the  event  of  drug-protein  binding  usually
occurs  between  conserved  residue  fragments  in  the  protein
sequence and atom fragments of the drug molecule. Therefore,
a more comprehensive encoding strategy is  required to extract
information from the conserved fragments.
    In this paper, we propose a novel model, named FragDPI, to
predict the drug-protein binding affinity. Unlike other methods,
we encode the sequences based on the conserved fragments and
encode the protein and drug into a unified vector. Moreover, we
adopt  a  novel  two-step training strategy to  train  FragDPI.  The
pre-training  step  is  to  learn  the  interactions  between  different
fragments using unsupervised learning. The fine-tuning step is
for  predicting  the  binding  affinities  using  supervised  learning.
The  experiment  results  have  illustrated  the  superiority  of
FragDPI.
    
Keywords    affinity  score, drug-protein  interaction, BERT,
Bi-Transformer, virtual drug screening

 1    Introduction
Now that  the traditional  drug discovery pipeline suffers  from
high  cost,  long  cycle,  and  low  success  rate  [1].  In  the
application  of  virtual  drug  screening,  more  and  more
pharmaceutical  companies  adopt  virtual  drug  screening  by
developing  computational  methods  to  reduce  cost,  accelerate
the process and improve the success rate of drug discovery.

Virtual  drug  screening  searches  for  candidate  drug
molecules  that  can  bind  with  target  proteins  by  using

computational  methods,  which  guide  subsequent  wet
experiments.  There  are  two  main  kinds  of  virtual  drug
screening  techniques,  i.e.,  molecular  docking  [2]  and  drug-
protein  interaction  (DPI)  prediction.  Molecular  docking  can
visualize  the  drug-protein  binding  process  and  provide
possible conformations of the drug molecules. However, such
techniques require defining a scoring function to evaluate the
drug-protein  binding  energy  [3].  In  contrast,  defining  a
convincible function to characterize the binding energy is not
easy.  Moreover,  only  one  pair  of  drugs  and  protein  can  be
docked  each  time,  resulting  in  an  inefficient  molecular
docking technique for large-scale drug screening. As a result,
molecular docking is not a widespread technique in large-scale
virtual  drug  screening.  Unlike  molecular  docking,  the  DPI
prediction  methods  build  a  machine  learning-based  model  to
predict  the  drug-protein  binding  affinities.  Such  methods  are
data-driven  and  can  automatically  learn  good  models  from
known  drug-protein  binding  data  with  limited  prior
knowledge.  In  addition,  the  DPI  prediction  methods  can  be
used  for  large-scale  drug  screening  purposes,  which  is  very
helpful  for finding the most  suitable drug candidates that  can
reduce  unnecessary  trials  in  the  follow-up  experiments.
Therefore, we focus on the DPI prediction in this paper.

With  the  successful  applications  of  deep  learning  in  many
fields,  including  bioinformatics,  many  deep  learning-based
DPI  prediction  methods  have  recently  been  proposed  [4−7].
Generally,  these  end-to-end  methods  extract  features  directly
from  protein  and  drug  sequences  and  predict  drug-protein
binding affinities accordingly. Therefore, encoding the protein
(drug)  sequence  is  critical  for  building  the  models.  Most
existing methods usually use a one-hot vector to represent an
amino acid (atom) and then use the one-hot matrix to represent
the protein (drug) sequence. Such strategy is implicitly based
on  the  assumptions  that  the  single  residue  (atom)  is  the
functional unit for binding and every residue (atom) plays the
same  role  in  the  drug-protein  binding.  However,  in  the
biochemical  process,  the  DPI  usually  occurs  between
conserved  fragments  of  protein  and  drug  sequences,  rather
than  a  single  residue  and  atom  [8].  Obviously,  the  one-hot
matrix encoding method cannot reveal the details of the actual
drug-protein  binding.  Furthermore,  most  of  the  existing
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methods  adopt  the  two-stream  network  module  [5,6],  where
the  features  of  drugs  and  proteins  are  extracted  separately.
Such  feature  extraction  module  fails  to  learn  drug-protein
interaction  information,  lacking  a  local  investigation  of  the
interactions between drugs and proteins.

In this paper, we propose a novel method, named FragDPI,
for predicting drug-protein binding affinity. In order to model
the  biochemical  process,  we  encode  proteins  and  drugs  by
using  conserved  fragments  instead  of  single  amino  acids  or
atoms.  Moreover,  we  employ  a  unified  encoding  strategy  to
combine the fragments of drug and protein in order to extract
the  interaction  features.  We  adopt  a  novel  two-step  training
strategy  to  build  the  model.  In  the  first  sage,  we  focus  on
fragment  understanding  (FU)  which  enables  the  model  to
understand  the  relationship  of  fragments  between  drug  and
protein. For such purpose, we pre-train the model to obtain the
unified  coding  for  each  drug-protein  pair  by  unsupervised
learning.  In  the  second  stage,  we  focus  on  predicting  the
binding  affinities  by  fine-tuning  the  model  with  supervised
learning.  In  order  to  evaluate  our  model,  we  conduct
comparison experiments and an ablation study to illustrate its
advantages and potential applications.

The  highlights  of  this  paper  mainly  includes  the  following
three points:

We  propose  a  deep  learning  model  using  the  Bidirectional
Transformers  as  the  backbone,  FragDPI,  to  predict  the  drug-
protein  binding  affinity.  Moreover,  a  unified  coding  strategy
was  introduced  that  tokenizes  the  sequence  of  a  protein  by
identifying  conserved  fragments  in  the  sequence.  We  encode
drugs  and  proteins  into  a  unified  vector  to  more  precisely
describe  the  details  of  drug-protein  interactions  and  simplify
the encoding process.

We  build  the  model  through  a  novel  two-step  training
strategy. For the pre-training stage, we propose FU to explore
the  potential  information  between  the  protein  sequence
fragments  and  the  drug  molecule  fragments.  For  the  fine-
tuning  stage,  we  use  the  pre-trained  FragDPI  to  train  in  the
specific  datasets  and  then  complete  the  affinity  prediction  of
the drug-protein pair.

We  conduct  extensive  performance  evaluations  with  state-
of-the-art  methods  on  four  datasets.  The  results  show  that
FragDPI achieves the comparable performance in RMSE and
Pearson’s r. Compared with same-task methods, FragDPI can
explore  more  binding  features  from  conserved  fragments
between  protein  sequence  and  drug  molecule  string  through
the attention module of the model.

 2    Related work
 2.1    Drug screening
Previous  works  have  been  used  to  predict  DPI  through  the
biological experiment method and computer-assisted methods.

The  principal  method  of  the  biological  experiment  is  to
analyze  the  structure  of  the  target  protein  and  fluorescent
protein  labeling.  Researchers  leverage  cryo-electron
microscopy and other  biological  techniques to investigate the
structure  of  the  target  protein  or  use  fluorescent  protein
labeling to track key proteins [9,10]. However, these methods
have  various  limitations,  such  as  experimental  resources,

reagents,  and  economic  conditions.  Therefore,  virtual  drug
screening is more advantageous in this situation.

 2.2    DPI prediction
The  computer-assisted  DPI  prediction  methods  are  divided
into  three  categories  according  to  their  ideas:  similarity
between  target  proteins,  twin-tower  framework,  and  mixed
coding  for  different  information.  Kernel  regression  [11]  and
matrix factorization [12] utilize off-the-shelf DPI pairs to infer
the new pairs using the similarity of proteins. The twin-tower
framework  extracts  the  features  from  protein  and  drug
separately,  like  DeepDTA,  AttentionDTA  and  GraphDTA.
DeepDTA  [13]  employs  convolutional  neural  networks  to
extract  features  in  sequences  of  proteins  and  drugs.
AttentionDTA  [6]  adds  attention  modules  to  the  previous
framework.  GraphDTA  [14]  leverages  a  graph  convolutional
network to extract features closer to the data structure of drug
representation.  As  for  mixed  coding,  DeepDock  [7]  utilizes
structural  information  and sequence  information  together  and
predicts DPI with only a simple fully-connected model.

In  general,  the  above methods encode the protein and drug
sequences  usually  based  on  the  assumption  that  each  amino
acid  and  atom  has  the  same  contribution  to  the  binding,
resulting  in  the  information  of  each  amino  acid  (atom)
contained  being  equally  considered.  This  conflicts  with  the
true  biological  DPI,  so  a  specific  method  to  portray  the
realistic drug-protein binding process is necessary. We choose
residue fragments in the protein sequence and atom fragments
of the drug SMILES as the processed input of our network. In
protein  or  drugs,  conserved  fragments  are  the  leading
participant in DPI.

 2.3    Fragment representation
MolTrans  [5]  applies  a  frequency-based  mining  method  to
mine  the  sub-sequence  with  high  frequency.  Although  they
modify the smallest sub-structure of the smallest granularity of
the sequence to the fragment of the sequence, they only apply
attention to the protein or drug embedding module without put
attention on the interaction module instead of a CNN layer.

Therefore,  they  can  learn  a  few  features  characterizing  the
drug-protein  interaction.  A  better  coding  strategy  to  explore
the  DPI,  not  only  a  single  protein  or  drug,  is  helpful  in
predicting the affinity score.

 2.4    Pre-trained model
Previous  studies  [15,16]  have  demonstrated  that  pre-training
can help the model on downstream tasks. The pre-training can
help  the  model  learn  as  many  common  data  features  as
possible. These advanced methods with pre-training are shown
below. GPT-2 [17]  utilizes  large-scale  unsupervised data  sets
to  generate  texts.  While  applying  the  pre-trained  model  to
downstream  tasks  can  greatly  improve  the  performance  of
downstream  tasks.  T5  [18]  is  based  on  the  encoder-decoder
pre-trained  model  and  can  achieve  state-of-the-art  results  on
multiple natural language tasks. From the above methods, pre-
training is a decent strategy to learn features from large-scale
unsupervised  datasets.  This  is  also  one  of  the  sources  of
inspiration for our method.

These  strategies  are  mainly  based  on  the  extraction  of
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sequence features through self-attention.  These methods have
in  common  with  the  task  of  extracting  features  from  protein
sequence  and  drug  representation  string  in  biological
processes.  So  the  pre-training  was  also  applied  in  FragDPI.
The pre-training was used to mine the conserved fragments of
the multi-interaction process between residue fragments in the
protein  sequence  and  atom  fragments  of  the  drug  molecule.
The fine-tuning stage is  used to  predict  DPI  affinity  with  the
pre-trained model.

 3    Methodology
 3.1    Overview
The  FragDPI  is  a  deep  neural  network  model  to  predict  the
drug-protein  binding  affinity.  We  apply  the  transformer
encoder  module  to  the  sequence  fragments,  which  helps  us
understand  the  interaction  of  conserved  fragments  from  the
protein sequence and drug molecule.

The  structure  of  the  model  is  shown  in Fig. 1.  We  get  the
fragments’ vocabulary  with  the  descent  frequency  of  the
protein  sequence  and  drug  SMILES  through  the  FCS
algorithm.  After  obtaining  conserved  fragments  of  the  drug-
protein  pairs,  we  tokenized  the  segmented  fragments  with
vocabulary.  Then  we  take  the  embedding  operation  to  the
tokenized  fragment,  including  token  embedding  and  position
embedding  to  capture  the  sequence  text  information  and
position  information.  Following  [19],  we  get  the  embedding
vector  to  each  fragment  of  the  drug-protein  pairs.  The  next
step  is  the  interaction  module,  which  concatenates  the  drug
embedding  vector  and  protein  embedding  vector  together  to
explore  the  interaction  fragment  of  the  pair.  After  the
concatenation  operation,  we  put  the  embedding  vectors  into
the Bidireacion Transformer-Encoder.

A  novel  two-step  training  strategy  was  applied  to  the
FragDPI,  pre-training  stage  for  fragments  understanding  and
fine-tuning stage for  predicting the binding affinity  as  shown
in Fig. 1. The difference in the model between the two stages
is that  we add fully-connected layers to the model during the
fine-tuning stage to output the affinity scores.

The  overview  of  the  training  process  is  summarized  in
Algorithm 1.

 3.1.1    Conserved fragments mining
Before  tokenizing  the  drugs  (proteins)  sequence,  we  need  to
mine  and  identify  the  conserved  fragments  to  build  a
fragments’ vocabulary.  Due  to  the  lack  of  labeled  sub-
sequence  data,  we  use  FCS  (Frequent  Consecutive  Sub-
sequence  mining  algorithm  [5])  to  identify  the  conserved
fragments in protein amino acid sequences and drug SMILES
sequences.

W

W

The  FCS  algorithm  identifies  a  similar  set  of  fundamental
biochemical  conserved  fragments  based  on  the  frequency  of
tokens  in  massive  unlabelled  data.  The  FCS  algorithm  scans
through  tokenized  set  and  identifies  the  most  frequent
consecutive tokens, then updates every token in the tokenized
set  with the new token. This operation merges frequent sub-

 

 
 

 

 
Fig. 1    Overview of model.  The left  is FU pre-training stage, which predicts masked fragments of the sequences. And the right is fine-tuning
stage, which predicts the affinity scores
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sequences  into  one  token,  and  sub-sequences  that  are  not
frequent enough are decomposed into shorter tokens. The FCS
algorithm  provided  the  conserved  fragments  with  high
frequency  in  the  massive  protein  datasets,  helping  the  model
explore the functional motif of binding position.

Using  the  FCS  algorithm,  we  got  a  conserved  fragments’
vocabulary size of 23,614.

 3.1.2    Unified coding to tokens
After  the  conserved  fragments  mining,  the  protein  sequence
and  drug  SMILES  needed  to  be  tokenized  according  to  the
conserved fragments’ vocabulary.

In  order  to  learn  the  relationship  between  conserved
fragments  of  the  drug-protein  pair,  we  code  it  by  an  unified
coding  vector  as  input  of  the  model.  Therefore,  we
concatenate the drug and protein sequence and encode them in
the  meantime.  As  shown  in Fig. 2,  we  split  the  concatenated
sequence  into  conserved  fragments.  The  tokenization  of  the
conserved fragments  corresponds to  the  vocabulary  index we
obtained in the previous step.  Hence,  we obtain the sequence
tokenization,  i.e.,  a  one-dimensional  vector  containing  the
token  number  of  each  conserved  fragment.  Note  that  the
conserved fragments vocabulary is sorted with long segments
first and short ones last.

 3.1.3    Embedding module
To  capture  the  biological  semantics  of  conserved  fragments,
we apply  encoding methods  from [19]  to  the  token vector  of
the sequence.

W t
p W p

p

In  sequence  modeling  tasks,  modern  researches  leverage
token  embedding  to  represent  the  content  of  sequence  and
position  embedding  to  capture  the  position  information  in
sequence. Note that token embedding and position embedding
are  built  on  a  lookup  dictionary  with  random  initialization
parameters.  Protein  parameter  matrixes  of  token  embedding
and position embedding are denoted as  and , and drug

W t
d W p

d

Ed
Ep

parameter  matrix denotes as  and .  Final  embedding is
the  sum  of  token  embedding  and  position  embedding.  We
could  get  drug  representation  ( )  and  protein  representation
( ) through following equations.
 

Ed =W t
d ∗S d +W p

d ∗S d, (1)
 

Ep =W t
p ∗S p+W p

p ∗S p. (2)

 3.2    Interaction module

Ed Ep

E
[Ed :: Ep] [::]

We  choose  the  Bidirectional  Transformers  [19]  as  the
backbone  of  our  interaction  module.  Most  modern  works  are
encoding  drugs  and  proteins  separately,  which  thinks  the
process  of  encoding  should  be  in  the  same  domain.  We
concatenate  and  to  feed  into  interaction  module.
Concretely,  the  input  of  the  model,  denoted  as ,  is
characterized  as  (  denotes  the  operation  of
concatenating) as shown “input” in Fig. 1.
 

E = [Ed :: Ep]. (3)
Utilizing this form to input the model, FragDPI could model

the relationship between conserved fragments between protein
and  drug.  The  Bidirectional  Transformer  Encoder  leverages
the  self-attention  mechanism  to  model  the  hidden  state  from
the information of the other fragments.

 3.3    Fragment understanding

x0, x1, ..., xn

xi hmask
i

In  order  to  make  the  model  enable  to  understand  the
correspondence  of  conserved  fragments,  we  designed  an
unsupervised  task  named  Fragment  Understanding  (FU).  As
shown in Fig. 1, we randomly mask fragments in the input of
drug  and  protein.  Then  the  goal  of  pre-training  is  to  predict
masked  fragments.  Formally  speaking,  the  whole  input
sequence  has n tokens( ).  Furthermore,  the  mask
position  is  noted .  is  the  final  layer  hidden  state  of
masked  position.  In  summary,  the  pre-training  task  can  be

 

 
Fig. 2    Input  of  Model,  which  consists  of  token  embedding  and  position  embedding.  Token  embedding  is  used  to  represent  the  semantic  of
conserved fragments, and position embedding is used to provide position information of conserved fragments
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formatted as the following equation:
 

P(xmask
i |x0, ..., xi−1, xi+1, .., xn) = so f tmax(hmask

i ). (4)

[MAS K]

Inspired from [15], we attempted to make model understand
the  correspondence  of  fragments.  We  mask  randomly  drug
sequence  and  protein  sequence  separately.  The  strategy  of
mask is as followed: in 80% probability, we mask 15% of all
fragments  in  each  sequence  at  random;  the  masked  token  is
replaced by a special token  as shown in Fig. 1.

 3.4    DPI prediction

[AFF]
[AFF]

[AFF]
xa f f PreHead

The  fine-tuning  task  is  DPI  prediction,  which  predicts  the
affinity  score  of  input  drug  and  protein.  After  pre-training
about  FU,  we  initialized  the  model  with  the  pre-training
parameter.  Furthermore,  we  add  a  prediction  head  to  accept
the  hidden  of  special  token .  Specifically,  each  input
will  be  added  a  special  token  as  start  token ,  which
token has no semantics.  Furthermore,  it  could make attention
to all tokens in input. Inspired by text classification in natural
language  processing,  the  hidden  state  of ,  denoted  as

,  is  fed into the prediction head ( ),  then outputs
the score of corresponding drug and protein. In summary, this
task can be described as the following formation:
 

S core = PreHead(xa f f ), (5)
In  general,  we  divide  the  DPI  prediction  into  a  two-stage

training  task.  For  the  first  stage,  the  task  of  FU  utilizes  the
information  of  other  fragments  to  predict  the  masked
fragments.  For  the  second  stage,  the  model  makes  DPI
predictions  based  on  the  understanding  of  the  fragment
relationship.

 4    Experiments and results
In this section, we will describe the implementation details of
the model and experiments.

 4.1    Dataset
For  measuring  binding  affinity,  we  utilize  half-maximal
Inhibitory  Concentration  (IC 50)  as  the  main  index,  which  is
an  important  measure  of  potency  for  a  given  agent  in
pharmacology. The available experimental data is collected by
the publicly released database [20].  The drug-protein binding
data,  drug  SMILES  information  and  protein  amino-acid
sequences  are  extracted  separately  from  BindingDB  [21],
STITCH [22], and UniRef [23].

For  the  convenience  of  calculation,  we  use  the  logarithm
form of the maximal inhibitory concentration (shown like the
formula below) of label data.
 

pIC50 = − log10 IC50. (6)
To verify  the  applicability  of  FragDPI to  different  types  of

proteins,  four  distinct  functional  protein  data  were  collected
for further experiments: nuclear Estrogen Receptors (ER), Ion
Channels  (Ion-C),  Receptor  Tyrosine  Kinases  (RTK)  and  G-

protein-coupled  receptors  (GPCR).  The  four  protein  datasets
are designed to handle different biological processes and they
are described below.
●nuclear Estrogen receptors
ER is a transcription factor, a member of the nuclear receptor
superfamily,  which  regulates  the  transcription  of  hundreds  of
genes and ultimately leads to cell division, and has an essential
role  in  mammary  gland  development  and  in  the  proliferative
growth of cells that occurs during pregnancy.
● Ion channels
Ion-C  are  special  proteins  on  the  plasma  membrane  that
provide a channel through which charged ions can pass along
an electrochemical gradient across the plasma membrane.
● Receptor tyrosine kinases
RTK are high-affinity cell surface receptors for many peptide
growth  factors,  cytokines  and  hormones.  They  act  as  signal
transducers  that  mediate  cell-to-cell  communication  by
phosphorylating  tyrosine  residues  on  key  intracellular
substrate proteins.
● G-protein-coupled receptors
GPCR  are  the  largest  and  most  diverse  group  of  membrane
receptors in eukaryotes, which are integral membrane proteins
that  are  used  by  cells  to  convert  extracellular  signals  into
intracellular responses.

As  for  data  split  strategy,  starting  with  pIC50-labeled
samples, it completely excluded four classes of proteins above
from the training set. Then the rest has been randomly splited
into  the  training  set  and  the  default  test  set  without  the
aforementioned four classes of protein targets.

Note  that  the  training  set  doesn’t  include  the  above  four
classes  data. Table 1 shows  the  statistics  information  of
datasets.

 4.2    Implementation details
The model is implemented in Pytorch. For pre-training, we set
the batch size and the epoch to 8 and 50, and the learning rate
is  1e–5.  For  fine-tuning  stage,  the  set  is  the  same  as  pre-
training.

As for tokenizing process, the max length we set is 512. We
utilize the pre-trained results of FCS in [5],  which generate a
set  of  the  hierarchy of  frequent  sub-sequences  for  sequences.
FCS was  trained  on  DrugBank  for  drugs  and  BindingDB for
proteisn.  The  model  is  trained  on  a  single  NVIDIA  RTX
2080Ti GPU with a memory capacity of 11GB.

 4.3    Baselines and metrics
The root mean squared errors (RMSE) and Pearson correlation
coefficient  (r)  are  chosen  to  measure  the  performance  of
models.  RMSE measures  the  deviation  between the  observed
value  and  the  true  value,  which  is  often  used  in  fitting
calculations. In the field of natural sciences, the Pearson’s r is
widely  used  to  measure  the  degree  of  linear  correlation
between  two  variables.  Loosely  speaking,  the  lower  RMSE

   
Table 1    Statistics informations of datasets about the number of drug-protein pairs and the average length of tokenized sequences

Data class Train Test ER Ion-C RTK GPCR
Number of drug-protein pairs 263584 113168 3374 14599 34318 60238
Average length 243 243 233 352 427 186
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and  the  higher  the  Pearson’s  r  is  corresponding  to  better
performance; vice versa.

In  order  to  fully  verify  the  effectiveness  of  our  model,  we
choose  shallow  and  deep  model.  The  followings  are  our
baselines:
● Ridge regression
Ridge  regression  is  used  to  estimate  the  coefficients  of
multiple  regression  models  when  independent  variables  are
highly  correlated.  It  has  been  applied  in  many  domains,
including chemistry, econometrics, and engineering.
● Lasso regression
Lasso  regression  is  a  method  of  linear  regression  through
using  shrinkage.  Shrinkage  is  where  data  values  are  shrunk
towards a central point, like the mean.
● DeepAffinity
DeepAffinity  is  a  deep  model,  which  combines  the
Convolutional  Neural  Network  (CNN)  and  Recurrent  Neural
Network (RNN) [20].
● DeepDTA
DeepDTA  is  a  CNN-based  prediction  model  that  comprises
two  separate  CNN  blocks,  each  of  which  aims  to  learn
representations  from  SMILES  strings  and  protein  sequences
[13].
● AttentionDTA
AttentionDTA  uses  one-dimensional  Convolution  Neural
Networks  (1D-CNNs)  to  extract  the  abstract  information  of
drug and protein and associates attention mechanism to predict
the binding affinity of DTI [6].
● BACPI
BACPI  employs  graph  attention  network  and  convolutional
neural  network  (CNN)  to  learn  the  representations  of
compounds and proteins and develop a bi-directional attention
neural network model to integrate the representations [24].

 4.4    Result analysis
In order to gain the most optimal model for this task, we first
did  parameter  grid  experiments  on  the  test  dataset,  using
RMSE  and  Pearson’s  r  as  metrics  to  demonstrate  the
performance of the model. It  was found that FragDPI has the
best  performance  when  using  a  6-layer  attention  block,  with
12 heads  per,  and the  RMSE is  0.84 and Pearson’s  r  is  0.84.
Also, the hidden size and embedding size of FragDPI is 384.

 4.4.1    The necessity of pre-training
After  establishing  the  best  model,  we  further  compared  the
results  of  model  with  FU  pre-training  and  without  FU  pre-
training to validate the necessity of the FU pre-training phase.
The  result  in  all  datasets  as  shown  in Figs. 3 and 4.  As
expected,  on  the  test  dataset,  the  MRSE error  was  decreased
by  0.08  and  Pearson’s  r  increased  by  0.05  through  FU  pre-
training.  On  the  other  datasets,  the  FU  pre-trained  FragDPI
achieved  a  better  performance  in  ER,  GPCR  and  RTK,
implying  that  FU  pre-training  stage  would  improve  the
prediction of the model.

Since  the  pre-training  introduced  a  unified  coding  strategy
for  protein  and  drug  conserved  fragments  with  unsupervised
learning,  the  model  learned  the  contextual  information  of
some  protein  and  drug  molecule  fragments  through  FU  pre-

training.  Moreover,  because  of  the  mechanism  of  action  of
DPI,  the  FragDPI  mines  more  information  related  to  protein
and  drug  subsequences  during  the  interaction  and  improves
the prediction score.  This pre-training approach can therefore
be  extended  to  another  task  to  improve  the  overall
effectiveness of the model.

 4.4.2    Compared with baselines
To  verify  the  superiority  of  the  model,  we  first  compared
FragDPI  and  baselines  on  the  test  dataset  and  the  results  are
shown in the first  column from Tables 2 and 3.  Based on the
results,  it  can  be  seen  that  the  traditional  shallow  network
approaches  (like  Ridge  regression  and  Lasso  regression)
performs inferior to the deep network approaches. Among the
deep  network  methods,  FragDPI  outperforms  DeepDTA,
attentionDAT  in  prediction,  both  in  terms  of  RMSE  and
Pearson's  metrics.  The  results  show  that  FragDPI  is  very
competent in predicting affinity scores.

Further  comparison  experiments  were  done  to  prove  the
generality of the model. The models were tested and compared
on other datasets and the results are shown in Tables 2 and 3.
For  the  four  functional  proteins,  We  compared  the
performance of different baselines and datasets on Pearson’s r,
and  found  that  FragDPI  had  the  same  score  as  DeepAffinity
on  test,  RTK,  both  of  which  were  higher  than  the  other
methods,  except  BACPI.  Specifically,  FragDPI  had  the  best
performance  on  the  ER  dataset.  However,  the  results  of
FragDPI on Ion-C or  GPCR were not  so good,  implying that
the generalizability of FragDPI needs further enhancement.

Interestingly,  the  Ridge  regression  method  had  the  best
predictions  in  the  Ion-C  type  proteins,  suggesting  that
comparable  performance  can  also  be  achieved  with  shallow

 

 
Fig. 3    RMSE results of FragDPI with FU pre-training and without FU pre-
training in five different datasets. Phrase “with FU” denotes FragDPI with FU
pre-training and characters “w/o FU” denotes without FU pre-training
 

 

 
Fig. 4    Pearson’s r results of FragDPI with FU pre-training and without FU
pre-training
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models. In the ER protein category, the FragDPI method beat
the  other  methods  on  Pearson’s  r.  However,  the  results  of
FragDPI on Ion-C or  GPCR were not  so good,  implying that
the generalizability of FragDPI needs further enhancement.

Although the deep learning models described above achieve
good  performance,  shallow  network  models  also  have  the
advantage  of  fast  convergence  and  more  straightforward
implementation  for  some  specific  tasks.  While  deep  learning
models can achieve better results, it is also based on increasing
the number of parameters and training time.

It  is  to be noted that  the single-stream coding approach we
use  is  more  challenging  to  learn  than  the  baseline  models
described above, as there are two types of data in the input and
the  model  needs  to  distinguish  and  derive  valid  information
from  them.  Our  framework  is  more  flexible  and  can  also  be
applied to other task of the same type to extract sub-sequence
features. In addition, we use an attention model to demonstrate
the effectiveness of our conserved fragments coding.

 4.4.3    Ablation studies
To  investigate  the  performance  of  FragDPI  further,  we
conducted  additional  ablation  experiments  on  FragDPI
regarding the encoding strategy of SSPro and FCS. As shown
in Table 4, the unified coding of FragDPI with FCS achieved
better  performance  in  the  test  set,  ER,  Ion-C,  and  r  in  RTK,
compared with SSPro.

Different  strategies  for  protein  conserved  fragments  exp-
loration  may  lead  to  different  results.  And  the  results  of
ablation  show  that  FCS  has  better  performance.  However,
SSPro  is  more  fine-grained  in  its  concentration  of  protein
information.  In  the  process,  it  may  consider  many  properties
of  a  protein.  Intuitively,  it  condenses  over  1000  amino  acids

into about 50, which loses too much information. In contrast,
FCS  is  based  on  pre-trained  data  and  the  frequency  of
conserved  fragments.  There  is  still  a  gap  with  the  real
conserved fragment. However, MolTrans [5] also verified the
correspondence  between  FCS  and  biological  conserved
fragment.  This  ablation  experiment  proves  that  sub-sequence
coding is an effective method, but this method still deserves to
be explored and studied in depth.

 4.4.4    Protein drug binding site analysis
To validate the model’s ability to mine conserved fragments of
drug-protein  interactions,  we  picked  specific  drug-protein
pairs,  fed  them  into  the  model,  and  visualized  the  attention
scores of the drug and protein.

βIn this paper, we have selected protein kinase C  type from
the  BindingDB  database,  an  essential  protein  kinase  in  the
human  life  process  and  is  involved  in  various  life  processes
such  as  transcription  and  apoptosis.  The  drug  BDBM2591,  a
maleimide  derivative,  was  also  selected  based  on  the
corresponding  data  in  the  BindingDB.  Detailed  drug  and
protein information can be found in the BindingDB database.

To validate the model's ability to mine conserved fragments
of  drug-protein  interactions,  we  picked  specific  drug-protein
pairs,  fed  them  into  the  model,  and  visualized  the  attention
scores of the drug and protein.

βIn this paper, we have selected protein kinase C  type from
the  BindingDB  database,  an  essential  protein  kinase  in  the
human life process involved in various life processes such as
transcription  and  apoptosis.  The  drug  BDBM2591,  a
maleimide  derivative,  was  also  selected  based  on  the
corresponding  data  in  the  BindingDB.  Detailed  drug  and
protein information can be found in the BindingDB database.

The  amino  acid  sequence  of  the  protein  kinase  and  the
SMILES sequence of the drug BDBM2591 were concatenated
into  the  model.  The attention scores  associated with  the  103-
116 token bits of the protein and the corresponding drug were
output are shown in Fig. 5.

In Fig. 5,  the  vertical  axis  is  the  drug  fragment  and  the
horizontal axis is the protein fragment at 103-116 token bites.
We  can  get  the  key  information  that  the  protein  conserved
residue fragment “IWD” is the region with the higher attention
score  of  the  drug,  indicating  that  the  fragment “IWD”
contributes  more  to  the  drug-protein  interaction.  In  addition,
the  fragment  was  also  validated  in  the  literature  and  is
consistent  with  the  binding  site  data  provided  in  the
BindingDB database [25,26].

From  the  above  experiments,  the  multilayer  attention
modules  proposed  in  this  paper  will  focus  more  on  the
possible  binding  region  of  the  drug  to  the  protein  during  the
model  calculation.  The  information  about  this  region  will
contribute more to the binding affinity of the model.

   
Table 2    Results of main experiment based on RMSE. The Bold denotes the
best performance

RMSE Test ER Ion-C GPCR RTK
Ridge regression 1.23 1.46 1.26 1.34 1.51
Lasso regression 1.22 1.48 1.32 1.37 1.50
DeepAffinity 0.78 1.53 1.34 1.40 1.24
DeepDTA 0.98 1.48 1.45 1.40 1.25
AttentionDTA 1.18 1.97 1.72 1.85 1.75
BACPI 0.79 0.67 1.53 1.64 0.37
FragDPI(ours) 0.84 1.42 1.47 1.51 1.30
 

   
Table 3    Results of experiments based on Pearson’s r

Pearson’s r Test ER Ion-C GPCR RTK
Ridge regression 0.54 0.18 0.23 0.20 0.10
Lasso regression 0.55 0.18 0.17 0.17 0.11
DeepAffinity 0.84 0.16 0.17 0.24 0.39
DeepDTA 0.75 0.17 0.11 0.24 0.34
AttentionDTA 0.69 0.13 0.04 0.19 0.23
BACPI 0.84 0.16 −0.01 0.26 0.43
FragDPI(ours) 0.84 0.26 0.02 0.18 0.39
 

   
Table 4    Results of ablation based on RMSE (and Pearson’s r), which compares different sequence fragments identifying strategy on FragDPI. SSPro means
another strategy of identifying fragments

RMSE(r) Test ER Ion-C GPCR RTK
FragDPI(SSPro) 0.98(0.76) 1.46(0.26) 1.47(0.065) 1.36(0.24) 1.29(0.35)
FragDPI(FCS) 0.84(0.84) 1.42(0.26) 1.47(0.02) 1.51(0.18) 1.30(0.39)
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 4.4.5    Case study
As we developed FragDPI to discover potential drugs through
protein  sequences,  we  applied  FragDPI  to  a  specific  task  to
illustrate  the  effectiveness  of  FragDPI  for  drug  screening,  so
we  performed  a  case  study  to  demonstrate  its  predictive
function.  We chose  the  spike  protein  of  COVID-19  (rSARS-
CoV-2) [27] which is an essential receptor for COVID-19, as
a  specific  target.  In  this  case,  we  tried  to  use  FragDPI  in  the
dataset to find some potential molecules that would inactivate
COVID-19 by binding to the critical spike target. We obtained
the  spike  protein  sequence  (GenBank:  QIG55857.1)  from
NCBI  and  applied  the  trained  FragDPI  to  find  the  candidate
drugs  in  the  test  dataset  we  mentioned  in  the  section  of
Experiments and Results.

The  top  10  candidate  drugs  with  high  affinity  values  are
shown in Table 5. We have performed literature validation of
the  screened  drug  candidates  to  determine  if  they  have  the
potential to bind Spike proteins.

According  to  the Table 5,  the  targets  of  the  ten  drugs
identified  include  PI3-kinase  subunit  delta  (PI3K-DELTA),
Histone  Deacetylase,  Dipeptidyl  peptidase  (DPP)  and
Monoamine  oxidase.  We  have  compiled  a  list  of  each  drug
target  by  reviewing  the  literature.  PI3K-DELTA  is  mainly
responsible  for  phosphorylating  specific  signaling  molecules
that  regulate  cell  growth  and  division  [28].  DPP-4  inhibitors
are  a  class  of  drugs  prescribed  to  control  hyperglycemia  in
adults  with  type  2  diabetes.  Monoamine  oxidase  inhibitors
(MAOIs)  are  treating different  forms of  depression and other
nervous  system  disorders  [30].  According  to  the  literature,

they are not strongly related to COVID-19.
Moreover,  we found Histone Deacetylase (HDAC) enzyme

activity  signified  the  importance  of  HDAC  isoform  in
tumorigenesis,  cancer,  neuronal  disorders,  parasitic/viral
infections  and  other  epigenetic  regulations,  so  we  have
conducted an in-depth study of Histone deacetylase inhibitors.
Histone  deacetylase  inhibitors  suppress  ACE2  and  ABO
simultaneously,  which  can  prevent  COVID-19  [29].
Furthermore,  the  corresponding  drug  of  it,  CHEMBL331781
and CHEMBL3317818, has a high-affinity score of 9.5085.

Screening  candidate  drugs  through  FragDPI  can  provide
helpful  predictive  results,  suggesting  that  FragDPI  is  a
valuable  tool  for  discovering  potential  drugs  for  target
proteins.

 5    Conclusion
Drug-protein  prediction  is  a  promising  way  to  virtual  screen
drugs for the target. It could provide not only clinical guidance
but  also  save  resources  and  time.  Modern  researches  encode
protein  or  drug  differently,  which  is  separate  and  time-
consuming.  Furthermore,  FragDPI  models  the  protein  and
drug together with the attention mechanism. To the best of our
knowledge, no method has been proposed to unify the coding
of  proteins  and  drugs  until  now.  Therefore,  we  propose  a
model  using  a  unified  coding  strategy,  FragDPI,  designed  to
extract  conserved  fragment  features  of  proteins  and  drugs  to
make features more bio-interpretable.

The  FragDPI  employs  Bidirectional  Transformers  as  the
backbone and uses a unified coding strategy for both proteins
and drugs to explore the interaction information of DPIs at the
conserved fragment level.  The experimental results show that
FragDPI  achieves  good  results  in  Pearson’s  correlation
coefficient r and RMSE.

And in the future, we will work on follow ing direction:

●  In  the  unified  coding  strategy,  we  plan  to  find  a  novel
way  of  coding  to  take  into  account  the  three-
dimensional  information  of  proteins  and  drugs  as  they
interact in a three-dimensional structure, and the use of
conserved fragment information may be insufficient for
the critical information provided by the model.

● Due to the superiority of our model in uniform encoding
and  fragments  extraction,  we  consider  to  improve  the
generality  of  the  model  and  apply  the  model  to  other
interaction tasks in the next step.

●  In  the  FU pre-training  phase,  FragDPI  requires  a  large

 

 
Fig. 5    The fragment attention score of the protein kinase C beta in 103-116
token bites and BDBM2591
 

   
Table 5    Top 10 drugs with high affinity score to spike

Number Candidates drug Target name Affinity score Reference
1 BDBM198018::US9221795, 14 PI3-kinase subunit delta 9.5151 Cell growth and division [28]
2 CHEMBL3317818 Histone Deacetylase 2 (HDAC2) 9.5085 Prevention or treatment of COVID-19 [29]
3 CHEMBL3317818 Histone deacetylase 8 9.5085 Prevention or treatment of COVID-19 [29]
4 BDBM198096::US9221795, 91 PI3-kinase subunit delta 9.4446 Cell growth and division [28]
5 US9255098, Ex. 1::US9255098, Ex. 4 Dipeptidyl peptidase 4 (DPP4) 9.3964 Chronic hyperglycemia [28]
6 CHEMBL3605370 Monoamine oxidase 9.3290 Depression [30]
7 CHEMBL3605370 Monoamine oxidase 9.3290 Depression [30]
8 US9499523, 6 PI3-kinase subunit beta 9.3247 DNA replication and repair [31]
9 US9221795, 87 PI3-kinase subunit delta 9.3219 Cell growth and division [28]
10 US9169243, 41 AKT/p21CIP1 9.3119 Unknown
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parameter space, so the model size is large. In the next
step we try to optimise the model to make it lighter and
faster.
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