Skip to main content
Log in

Swarm cognition on off-road autonomous robots

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

This paper contributes with the first validation of swarm cognition as a useful framework for the design of autonomous robots controllers. The proposed model is built upon the authors’ previous work validated on a simulated robot performing local navigation on a 2-D deterministic world. Based on the ant foraging metaphor and motivated by the multiple covert attention hypothesis, the model consists of a set of simple virtual agents inhabiting the robot’s visual input, searching in a collectively coordinated way for obstacles. Parsimonious and accurate visual attention, operating on a by-need basis, is attained by making the activity of these agents modulated by the robot’s action selection process. A by-product of the system is the maintenance of active, parallel and sparse spatial working memories. In short, the model exhibits the self-organisation of a relevant set of features composing a cognitive system. To show its robustness, the model is extended in this paper to handle the challenges of physical off-road robots equipped with noisy stereoscopic vision sensors. Furthermore, an extensive aggregate of biological arguments sustaining the model is provided. Experimental results show the ability of the model to robustly control the robot on a local navigation task, with less than 1% of the robot’s visual input being analysed. Hence, with this system the computational cost of perception is considerably reduced, thus fostering robot miniaturisation and energetic efficiency. This confirms the advantages of using a swarm-based system, operating in an intricate way with action selection, to judiciously control visual attention and maintain sparse spatial memories, constituting a basic form of swarm cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, M., & Konolige, K. (2006). Real-time localization in outdoor environments using stereo vision and inexpensive GPS. In Proceedings of the 18th international conference on pattern recognition (ICPR) (pp. 1063–1068). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Aloimonos, J., Weiss, I., & Bandyopadhyay, A. (1988). Active vision. International Journal of Computer Vision, 1(4), 333–356.

    Article  Google Scholar 

  • Alvarez, G. A., & Cavanagh, P. (2005). Independent resources for attentional tracking in the left and right visual hemifields. Psychological Science, 16(8), 637–643.

    Article  Google Scholar 

  • Antón-Canalís, L., Hernández-Tejera, M., & Sánchez-Nielsen, E. (2006). Particle swarms as video sequence inhabitants for object tracking in computer vision. In Proceedings of the sixth international conference on intelligent systems design and applications (ISDA) (pp. 604–609). Los Alamitos: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Ashby, W. R. (1952). Design for a brain. London: Chapman and Hall.

    Google Scholar 

  • Bagdanov, A. D., Bimbo, A. D., Nunziati, W., & Pernici, F. (2006). A reinforcement learning approach to active camera foveation. In Proceedings of the 4th ACM international workshop on video surveillance and sensor networks (pp. 179–186). New York: ACM.

    Chapter  Google Scholar 

  • Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 996–1005.

    Article  Google Scholar 

  • Balkenius, C., Eriksson, A. P., & Astrom, K. (2004). Learning in visual attention. In Proceedings of the international conference on pattern recognition (ICPR), workshop on learning for adaptable visual systems (LAVS 2004) (Vol. 4). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Ballard, D. H. (1991). Animate vision. Artificial Intelligence, 48(1), 57–86.

    Article  MathSciNet  Google Scholar 

  • Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P. N. (1997). Deictic codes for the embodiment of cognition. Behavioral and Brain Sciences, 20, 723–767.

    Google Scholar 

  • Bedau, M. A. (2003). Artificial life: organization, adaptation and complexity from the bottom up. Trends in cognitive sciences, 7(11), 505–512.

    Article  Google Scholar 

  • Beer, R. D. (1995). A dynamical systems perspective on agent-environment interaction. Artificial Intelligence, 72(1–2), 173–215.

    Article  Google Scholar 

  • Beer, R. D. (2003). The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior, 11(4), 209–243.

    Article  Google Scholar 

  • Behringer, R., & Muller, N. (1998). Autonomous road vehicle guidance from autobahnen to narrow curves. IEEE Transactions on Robotics and Automation, 14(5), 810–815.

    Article  Google Scholar 

  • Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: from natural to artificial systems. New York: Oxford University Press.

    MATH  Google Scholar 

  • Bradski, G., & Kaehler, A. (2008). Learning OpenCV: computer vision with the OpenCV library. Sebastopol: O’Reilly Media, Inc.

    Google Scholar 

  • Broggi, A., & Cattani, S. (2006). An agent based evolutionary approach to path detection for off-road vehicle guidance. Pattern Recognition Letters, 27(11), 1164–1173.

    Article  Google Scholar 

  • Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1), 139–159.

    Article  Google Scholar 

  • Chialvo, D. R., & Millonas, M. M. (1995). How swarms build cognitive maps. In L. Steels (Ed.), NATO ASI series: Vol. 144. The biology and technology of intelligent autonomous agents (pp. 439–450).

    Google Scholar 

  • Choe, Y., Yang, H. F., & Misra, N. (2008). Motor system’s role in grounding, receptive field development, and shape recognition. In Proceedings of the 7th international conference on development and learning (ICDL) (pp. 67–72). Los Alamitos: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.

    Article  Google Scholar 

  • Couzin, I. (2009). Collective cognition in animal groups. Trends in Cognitive Sciences, 13(1), 36–43.

    Article  Google Scholar 

  • de Croon, G., & Postma, E. O. (2007). Sensory-motor coordination in object detection. In Proceedings of the IEEE symposium on artificial life (CI-ALIFE) (pp. 147–154). Los Alamitos: IEEE CIS.

    Chapter  Google Scholar 

  • de Haan, B., Morgan, P. S., & Rorden, C. (2008). Covert orienting of attention and overt eye movements activate identical brain regions. Brain research, 1204, 102–111.

    Article  Google Scholar 

  • Deneubourg, J.-L., Goss, S., Franks, N., & Pasteels, J. M. (1989). The blind leading the blind: modeling chemically mediated army ant raid patterns. Journal of Insect Behavior, 2(5), 719–725.

    Article  Google Scholar 

  • Dewey, J. (1896). The reflex arc concept in psychology. Psychological Review, 3, 357–370.

    Article  Google Scholar 

  • Dickmanns, E. D., Mysliwetz, B., & Christians, T. (1990). An integrated spatio-temporal approach to automatic visual guidance of autonomous vehicles. IEEE Transactions on Systems, Man and Cybernetics, 20(6), 1273–1284.

    Article  Google Scholar 

  • Doran, M. M., Hoffman, J. E., & Scholl, B. J. (2009). The role of eye fixations in concentration and amplification effects during multiple object tracking. Visual Cognition, 17(4), 574–597.

    Article  Google Scholar 

  • Egner, T., Monti, J. M. P., Trittschuh, E. H., Wieneke, C. A., Hirsch, J., & Mesulam, M. (2008). Neural integration of top-down spatial and feature-based information in visual search. Journal of Neuroscience, 28(24), 6141.

    Article  Google Scholar 

  • Eimer, M., Forster, B., Velzen, J. V., & Prabhu, G. (2005). Covert manual response preparation triggers attentional shifts: Erp evidence for the premotor theory of attention. Neuropsychologia, 43(6), 957–966.

    Article  Google Scholar 

  • Fend, M., Bovet, S., Yokoi, H., & Pfeifer, R. (2003). An active artificial whisker array for texture discrimination. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1044–1049). New York: IEEE Press.

    Google Scholar 

  • Fermuller, C., & Aloimonos, Y. (1995). Vision and action. Image and Vision Computing, 13, 725–755.

    Article  Google Scholar 

  • Floreano, D., Toshifumi, K., Marocco, D., & Sauser, E. (2004). Coevolution of active vision and feature selection. Biological Cybernetics, 90(3), 218–228.

    Article  MATH  Google Scholar 

  • Floreano, D., Durr, P., & Mattiussi, C. (2008). Neuroevolution: from architectures to learning. Evolutionary Intelligence, 1(1), 47–62.

    Article  Google Scholar 

  • Franks, N. R. (1989). Army ants: a collective intelligence. American Scientist, 77(2), 138–145.

    MathSciNet  Google Scholar 

  • Frintrop, S., Backer, G., & Rome, E. (2005). Goal-directed search with a top-down modulated computational attention system. In Lecture notes on computer science: Vol. 3663. Proceedings of the DAGM 2005 (pp. 117–124). Berlin: Springer.

    Google Scholar 

  • Gerstner, W., & Kistler, W. (2002). Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Gibson, J. (1979). The ecological approach to visual perception. Hillsdale: Erlbaum.

    Google Scholar 

  • Goodale, M. A. (2008). Action without perception in human vision. Cognitive Neuropsychology, 25(7), 891–919.

    Article  Google Scholar 

  • Hayhoe, M., & Ballard, D. (2005). Eye movements in natural behavior. Trends in Cognitive Sciences, 9(4), 188–194.

    Article  Google Scholar 

  • Hernandez, D., Cabrera, J., Naranjo, A., Dominguez, A., & Isern, J. (2007). Gaze control in a multiple-task active-vision system. In Proceedings of the 5th international conference on computer vision systems (ICVS), Bielefeld, Germany, March 2007. Applied Computer Science Group.

    Google Scholar 

  • Hou, X., & Zhang, L. (2007). Saliency detection: a spectral residual approach. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–8). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Hwang, A. D., Higgins, E. C., & Pomplun, M. (2009). A model of top-down attentional control during visual search in complex scenes. Journal of Vision, 9(5), 1–18.

    Article  Google Scholar 

  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews, Neuroscience, 2, 1–10.

    Article  Google Scholar 

  • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1254–1259.

    Article  Google Scholar 

  • Kelly, A., & Stentz, A. (1998). Rough terrain autonomous mobility—part 2: an active vision, predictive control approach. Autonomous Robots, 5(2), 163–198.

    Article  Google Scholar 

  • Kim, D., & Moeller, R. (2006). Passive sensing and active sensing of a biomimetic whisker. In Proceedings of the international conference on the simulation and synthesis of living systems (ALife X) (pp. 282–288). Cambridge: The MIT Press.

    Google Scholar 

  • Koch, C., & Ullman, S. (1985). Shifts in selective visual attention: towards the underlying neural circuitry. Human Neurobiology, 4(4), 219–227.

    Google Scholar 

  • Konolige, K. (1997). Small vision systems: hardware and implementation. In Proceedings of the international symposium on robotics research (ISRR) (pp. 111–116). London: Springer.

    Google Scholar 

  • Konolige, K., & Beymer, D. (2007). SRI small vision system users manual, May 2007.

  • Kwok, C., & Fox, D. (2004). Reinforcement learning for sensing strategies. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3158–3163). New York: IEEE Press.

    Google Scholar 

  • Land, M. (1999). Motion and vision: why animals move their eyes. Journal of Computational Physiology A, 185, 341–352.

    Article  Google Scholar 

  • Liu, J., Tang, Y., & Cao, Y. (1997). An evolutionary autonomous agents approach to image feature extraction. IEEE Transactions on Evolutionary Computation, 1(2), 141–158.

    Article  Google Scholar 

  • Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with probabilistic population codes. Nature Neuroscience, 9(11), 1432–1438.

    Article  Google Scholar 

  • Marr, D. (1982). Vision: a computational investigation into the human representation and processing of visual information. New York: Henry Holt and Co., Inc.

    Google Scholar 

  • Marshall, J. A. R., & Franks, N. R. (2009). Colony-level cognition. Current Biology, 19(10), 395–396.

    Article  Google Scholar 

  • Marshall, J. A. R., Bogacz, R., Dornhaus, A., Planqué, R., Kovacs, T., & Franks, N. R. (2009). On optimal decision-making in brains and social insect colonies. Journal of the Royal Society Interface, 6(40), 1065–1074.

    Article  Google Scholar 

  • Matthies, L. (1989). Dynamic stereo vision. Ph.D. thesis, School of Computer Science, Carnegie Mellon University.

  • Mazouzi, S., Guessoum, Z., Michel, F., & Batouche, M. (2007). A multi-agent approach for range image segmentation. In LNAI: Vol. 4696. Proceedings of the 5th international Central and Eastern European conference on multi-agent systems and applications (CEEMAS) (pp. 1–10). Berlin: Springer.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. London: Oxford University Press.

    Google Scholar 

  • Minsky, M. (1988). The society of mind. New York: Simon & Schuster.

    Google Scholar 

  • Mobahi, H., Ahmadabadi, M. N., & Araabi, B. N. (2006). Swarm contours: a fast self-organization approach for snake initialization. Complexity, 12(1), 41–52.

    Article  Google Scholar 

  • Mossio, M., & Taraborelli, D. (2008). Action-dependent perceptual invariants: from ecological to sensorimotor approaches. Consciousness and Cognition, 17(4), 1324–1340.

    Article  Google Scholar 

  • Nabbe, B., & Hebert, M. (2003). Where and when to look: how to extend the myopic planning horizon. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 920–927). New York: IEEE Press.

    Google Scholar 

  • Navalpakkam, V., & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45(2), 205–231.

    Article  Google Scholar 

  • Neider, M. B., & Zelinsky, G. J. (2006). Scene context guides eye movements during visual search. Vision Research, 46(5), 614–621.

    Article  Google Scholar 

  • Nolfi, S. (2005). Categories formation in self-organizing embodied agents. In Handbook of categorization in cognitive science (pp. 869–889). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Nolfi, S., & Marocco, D. (2002). Active perception: a sensorimotor account of object categorization. In Proceedings of the 7th international conference on simulation of adaptive behavior (SAB) (pp. 266–271), Edinburgh, August, 2002. Cambridge: MIT Press.

    Google Scholar 

  • O’Regan, J. K., & Noe, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24, 939–1031.

    Article  Google Scholar 

  • Owechko, Y., & Medasani, S. (2005). A swarm-based volition/attention framework for object recognition. In Proceedings of the IEEE computer vision and pattern recognition workshop (CVPRW) (pp. 91–98). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Palmer, S. E. (1999). Vision science: photons to phenomenology. Cambridge: MIT Press.

    Google Scholar 

  • Passino, K. M., Seeley, T. D., & Visscher, P. K. (2008). Swarm cognition in honey bees. Behavioral Ecology and Sociobiology, 62(3), 401–414.

    Article  Google Scholar 

  • Patel, K., Macklem, W., Thrun, S., & Montemerlo, M. (2005). Active sensing for high-speed offroad driving. In Proceedings of the IEEE international conference robotics and automation (ICRA) (pp. 3162–3168). New York: IEEE Press.

    Chapter  Google Scholar 

  • Pfeifer, R., & Bongard, J. C. (2006). How the body shapes the way we think—a new view of intelligence. Cambridge: MIT Press.

    Google Scholar 

  • Pfeifer, R., & Scheier, C. (1999). Understanding intelligence. Cambridge: MIT Press.

    Google Scholar 

  • Poli, R., & Valli, G. (1993). Neural inhabitants of MR and echo images segment cardiac structures. In Proceedings of the computers in cardiology (pp. 193–196). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179.

    Article  Google Scholar 

  • Ramos, V., & Almeida, F. (2000). Artificial ant colonies in digital image habitats—a mass behavior effect study on pattern recognition. In Proceedings of the 2n international workshop on ant algorithms—from ant colonies to artificial ants (ANTS) (pp. 113–116), Belgium.

    Google Scholar 

  • Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two choice reaction time. Psychological Review, 111, 333–367.

    Article  Google Scholar 

  • Rizzolatti, G., Riggio, L., Dascola, I., & Umiltá, C. (1987). Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25(1A), 31–40.

    Article  Google Scholar 

  • Rothkopf, C., Ballard, D., & Hayhoe, M. (2007). Task and context determine where you look. Journal of Vision, 7(14–16), 1–20.

    Google Scholar 

  • Santana, P., & Correia, L. (2008). Improving visual odometry by removing outliers in optic flow. In Proceedings of the 8th conference on autonomous robot systems and competitions.

    Google Scholar 

  • Santana, P., & Correia, L. (2010). A swarm cognition realization of attention, action selection and spatial memory. Adaptive Behavior, 18(5), 428–447.

    Article  Google Scholar 

  • Santana, P., Cândido, C., Santos, P., Almeida, L., Correia, L., & Barata, J. (2008). The Ares robot: case study of an affordable service robot. In Proceedings of the European robotics symposium, 2008 (EUROS) (pp. 33–42). Berlin: Springer.

    Chapter  Google Scholar 

  • Santana, P., Guedes, M., Correia, L., & Barata, J. (2009). Saliency-based obstacle detection and ground-plane estimation for off-road vehicles. In Proceedings of the international conference on computer vision systems (ICVS) (pp. 275–284). Berlin: Springer.

    Google Scholar 

  • Santana, P., Guedes, M., Correia, L., & Barata, J. (2010). A saliency-based solution for robust off-road obstacle detection. In Proceedings of the international conference on robotics and automation (ICRA) (pp. 3096–3101). New York: IEEE Press.

    Google Scholar 

  • Scheier, C., Pfeifer, R., & Kuniyoshi, Y. (1998). Embedded neural networks: exploiting constraints. Neural Networks, 11, 1551–1596.

    Article  Google Scholar 

  • Slocum, A., Downey, D., & Beer, R. (2000). Further experiments in the evolution of minimally cognitive behavior: from perceiving affordances to selective attention. In Proceedings of the international conference on simulation of adaptive behavior (SAB) (pp. 430–439). Cambridge: MIT Press.

    Google Scholar 

  • Sporns, O., & Lungarella, M. (2006). Evolving coordinated behavior by maximizing information structure. In Proceedings of ALife X (pp. 3–7). Cambridge: MIT Press.

    Google Scholar 

  • Sprague, N., Ballard, D., & Robinson, A. (2007). Modeling embodied visual behaviors. ACM Transactions on Applied Perception, 4(2).

  • Sukthankar, R., Pomerleau, D., & Thorpe, C. (1993). Panacea: an active sensor controller for the alvinn autonomous driving system. In Proceedings of international symposium on robotics research (ISRR). London: Springer.

    Google Scholar 

  • Suzuki, M., & Floreano, D. (2006). Evolutionary active vision toward three dimensional landmark-navigation. In Proceedings of the 9th international conference on the simulation of adaptive behavior (SAB) (pp. 263–273). Cambridge: MIT Press.

    Google Scholar 

  • Tessier, C., Berducat, M., Chapuis, R., Chausse, F., & Cemagref, A. (2007). A new landmark and sensor selection method for vehicle localization and guidance. In Proceedings of the 2007 IEEE intelligent vehicles symposium (pp. 123–129). New York: IEEE Press.

    Chapter  Google Scholar 

  • Thelen, E., & Smith, L. B. (1996). A dynamic systems approach to the development of cognition and action. Cambridge: MIT Press.

    Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics (intelligent robotics and autonomous agents). Cambridge: MIT Press.

    Google Scholar 

  • Torralba, A., Murphy, K. P., Freeman, W. T., & Rubin, M. A. (2003). Context-based vision system for place and object recognition. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 273–280). Los Alamitos: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive psychology, 12(1), 97–136.

    Article  Google Scholar 

  • Trianni, V., & Tuci, E. (2010). Swarm cognition and artificial life. In LNCS/LNAI: Vols. 5777, 5778. Proceedings of the European conference on artificial life (ECAL). Berlin: Springer.

    Google Scholar 

  • Tsotsos, J. K., Culhane, S. M., Wai, W. Y. Kei, Lai, Y., Davis, N., & Nuflo, F. (1995). Modeling visual attention via selective tuning. Artificial intelligence, 78(1–2), 507–545.

    Article  Google Scholar 

  • Urmson, C., Ragusa, C., Ray, D., Anhalt, J., Bartz, D., Galatali, T., Gutierrez, A., Johnston, J., Harbaugh, S., Kato, H., Messner, W., Miller, N., Peterson, K., Smith, B., Snider, J., Spiker, S., Ziglar, J., Whittaker, W., Clark, M., Koon, P., Mosher, A., & Struble, J. (2006). A robust approach to high-speed navigation for unrehearsed desert terrain. Journal of Field Robotics, 23(8), 467–508.

    Article  MATH  Google Scholar 

  • van der Mark, W., Heuvel, J., & Groen, F. (2007). Stereo based obstacle detection with uncertainty in rough terrain. In Proceedings of the IEEE intelligent vehicles symposium (pp. 1005–1012). New York: IEEE Press.

    Chapter  Google Scholar 

  • van Veen, V., Krug, M. K., & Carter, C. S. (2008). The neural and computational basis of controlled speed-accuracy tradeoff during task performance. Journal of Cognitive Neuroscience, 20(11), 1952–1965.

    Article  Google Scholar 

  • Varela, F. J., Thompson, E., & Rosch, E. (1991). The embodied mind. Cambridge: MIT Press/Bradford Books.

    Google Scholar 

  • Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects. Neural Networks, 19, 1395–1407.

    Article  MATH  Google Scholar 

  • Wolfe, J. M. (1994). Guided search 2. 0. a revised model of visual search. Psychonomic Bulletin & Review, 1(2), 202–238.

    Article  Google Scholar 

  • Yarbus, A. L. (1967). Eye movements and vision. New York: Plenum.

    Google Scholar 

  • Zhang, X., Hu, W., Maybank, S., Li, X., & Zhu, M. (2008). Sequential particle swarm optimization for visual tracking. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–8). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Santana.

Additional information

This work was partially supported by IntRoSys, S.A. and by FCT/MCTES grant No. SFRH/BD/27305/2006.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

(mp4 19.9 MB)

(mp4 28.3 MB)

(mp4 21.7 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santana, P., Correia, L. Swarm cognition on off-road autonomous robots. Swarm Intell 5, 45–72 (2011). https://doi.org/10.1007/s11721-010-0051-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-010-0051-7

Keywords

Navigation