Skip to main content
Log in

Varying bending eigenfrequencies in BTA deep hole drilling: mechanical modeling using statistical parameter estimation

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

One serious problem in deep-hole drilling is the formation of a dynamic disturbance called spiralling which causes a multi-lobe shaped distortion of the bore hole cross section. An important factor governing the occurrence of spiralling is the coincidence of a bending eigenfrequency of the boring tool with a multiple of the spindle rotation frequency. This article presents a discrete dynamic model of the tool/boring-bar assembly including a Lanchester-damper and containing free parameters for the unknown stiffness of the tools lateral supports. Furthermore, a method for estimating these parameters by determining the changing eigenfrequencies over the drilling depth from spectrogram data using the maximum likelihood method is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. N. N. (2006) VDI-Richtlinie 3210 Blatt 1: Tiefbohrverfahren/Deep-hole drilling. Beuth Verlag GmbH, Berlin

  2. Heisel U, Storchak M, Eissler R (2003) Determination of cutting parameters with deep hole drilling with single-fluted gun drills of smallest diameters. Production engineering—research and development Ann German Acad Soc Prod Eng X(1):51–54

    Google Scholar 

  3. Weinert K, Webber O, Busse A, Hüsken M, Mehnen J, Stagge P (2001) Experimental investigation of the dynamics of the BTA deep hole drilling process. Production engineering—research and development Ann German Acad Soc Prod Eng VIII(2):1–4

    Google Scholar 

  4. Weinert K, Webber O, Gepperth A, Zhang Y, Theis W (2004) Time varying process dynamics in BTA deep hole drilling. In: Teti R (ed) Proceedings of the 4th CIRP international seminar on intelligent computation in manufacturing engineering, ICME 2004, Sorrento, Naples, pp 419–424

  5. Weinert K, Webber O, Peters C (2005) On the influence of drilling depth dependent modal damping on chatter vibration in BTA deep hole drilling. Ann CIRP 54(1):363–366

    Article  Google Scholar 

  6. Gessesse YB, Latinovic VN (1991) Effect of the stuffing box on boring bar vibrations. Int J Prod Res 20(3):565–574

    Article  Google Scholar 

  7. Gessesse YB, Latinovic VN, Osman MOM (1994) On the problem of spiralling in BTA deep hole machining. J Eng Ind Trans ASME 116:161–194

    Article  Google Scholar 

  8. Stockert R (1978) Beitrag zur optimalen Auslegung von Tiefbohrwerkzeugen. Dissertation, University of Dortmund

  9. Streicher P (1975) Tiefbohren der Metalle. WI-Fachbuchreihe, Vogel-Verlag, Würzburg

  10. Pfleghar F (1975) Zur Entstehung von unrunden Bohrungen beim Arbeiten mit einschneidigen Tiefbohrwerkzeugen. TZ für praktische Metallbearbeitung 69(12):389–393

    Google Scholar 

  11. Chin JH, Hsieh CT, Lee LW (1996) The shaft behaviour of BTA deep hole drilling tool. Int J Mech Sci 38(5):461–482

    Article  MATH  Google Scholar 

  12. Chin JH, Lee LW (1995) A study on the eigenproperties of a BTA deep hole drill—theorie and experiments. Int J Mach Tools Manuf 35(1):29–49

    Article  Google Scholar 

  13. Deng CS, Chin JH (2004) Roundness errors in BTA drilling and a model of waviness and lobing caused by resonant forced vibrations of its long drill shaft. J Manuf Sci Eng Trans ASME 126:524–534

    Article  Google Scholar 

  14. Perng YL, Chin JH (1999) Theoretical and experimental investigations on the spinning BTA deep hole drill shafts containing fluids and subject to axial forces. Int J Mech Sci 41:1301–1322

    Article  MATH  Google Scholar 

  15. Al-Wedyan HM (2004) Control of whirling vibrations in BTA deep hole boring process using fuzzy logic modeling and active suppression technique. Dissertation, Concordia University, Montreal

  16. Raabe N, Webber O, Theis W (2004) Spiralling in BTA deep hole drilling—how to model varying frequencies. In: 4th annual meeting of the European network for buisiness and industrial statitics (ENBIS). Kopenhagen, Denmark, pp 20–22

  17. Ewins DJ (2000) Modal testing—theory, practice and application, 2nd edn. Research Studies Press Ltd., Baldock

  18. Nelder JA, Mead R (1965) A simplex method for functional minimization. Comput J 7:308–331

    MATH  Google Scholar 

  19. Hartung J, Elpelt B, Klösener K-H (2002) Statistik. Oldenbourg Verlag, München

    Google Scholar 

  20. Schlittgen R, Streitberg BHJ (1999) Zeitreihenanalyse. Oldenbourg Verlag, München

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Webber.

Additional information

The work presented in this paper is financially supported by the ‘Deutsche Forschungsgemeinschaft (DFG)’ within the ‘Sonderforschungs-bereich (SFB)’ 475. It is conducted in cooperation with Lehrstuhl Computergestützte Statistik, University of Dortmund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinert, K., Weihs, C., Webber, O. et al. Varying bending eigenfrequencies in BTA deep hole drilling: mechanical modeling using statistical parameter estimation. Prod. Eng. Res. Devel. 1, 127–134 (2007). https://doi.org/10.1007/s11740-007-0004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-007-0004-1

Keywords

Navigation