Skip to main content
Log in

Machining induced residual stress in structural aluminum parts

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Machining operations of aluminum structural parts are typically carried out under high feeds and high cutting speeds. Under these conditions, high thermomechanical loads are exerted on the workpiece, which may result in changes in the subsurface material. Residual stresses can be one of the machining induced changes and can lead to considerable rejection rates caused by part distortion. Due to their significant economic importance, it is essential to understand the influence of the machining process on the residual stresses in aluminum. This paper presents the influence of the machining parameters as well as the cutting edge geometry on residual stress of workpieces made out of a forged aluminum alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Andrae P (2002) Hochleistungszerspanung von Aluminumknetlegierungen, Dr.-Ing. Dissertation Hannover

  2. Groppe M (2005) Prozessauslegung für die Hochleistungsfräsbearbeitung von Aluminum-Strukturbauteilen, Dr.-Ing. Dissertation Hannover

  3. Denkena B, Breidenstein B, de León L (2006) Influence of cutting parameters on residual stresses of aluminum structural parts. High Speed Machining, Metz

  4. Röttger K (2003) Walzen hartgedrehter Oberflächen. Dr.-Ing. Dissertation Aachen

  5. Denkena B, de León L, Köhler J (2005) Bearbeitungsinduzierte Eigenspannungen beim Fräsen von Aluminum und Titan. Neue Fertigungstechnologien für die Luft- und Raumfahrt, Hannover

    Google Scholar 

  6. Eigenmann B (1990) Röntgenographische Analyse inhomogener Spannungszustände in Keramiken, Keramik-Metall-Fügeverbindungen und dünnen Schichten, Dr.-Ing. Dissertation, Karlsruhe

  7. Ulutan D, Erdem Alaca B, Lazoglu I (2007) Analytical modelling of residual stresses in machining. J Mater Process Technol 183

  8. Sharman ARC, Hughes JI, Ridgway K (2006) An analysis of the residual stresses generated in Inconel 718TM when turning. J Mater Process Technol 173

  9. Tönshoff HK (1966) Eigenspannungen und plastische Verformungen im Werkstück durch spanende Bearbeitung, Dr.-Ing. Dissertation Hannover

  10. Brinksmeier E et al (1982) Residual stresses–measurement and causes in machining processes. Ann CIRP 31/2

  11. Bouzid Sai W et al (2001) Influence of machining by finishing milling on surface characteristics. Int J Mach Tools Manuf 41(3)

  12. Scholtes B (1990) Eigenspannungen in mechanisch randschichtverformten Werkstoffzuständen, Habilitationsschrift Karlsruhe

  13. Plöger JM (2002) Randzonenbeeinflussung durch Hoch-geschwindigkeitsdrehen, Dr.-Ing. Dissertation Hannover

  14. Denkena B, Breidenstein B, de León L (2006) Influence of high performance cutting on distortion of aluminum structural parts due to residual stress, high performance cutting, Van-couver

  15. Henriksen EK (1951) Residual stresses in machined surfaces. Trans ASME 73

  16. Gey C (2002) Prozessauslegung für das Flankenfräsen von Titan, Dr.-Ing. Dissertation Hannover

  17. Rao B, Shin YS (2001) Analysis of high-speed face-milling of 7075-T6 aluminum using carbide and diamond cutters. Int J Mach Tools Manuf Vol 41

  18. Cappello E, Davoli P (2000) The influence of turning parameters on residual stress. International Conference on Residual Stress, Oxford

    Google Scholar 

  19. Capello E (2006) Residual stresses in turning. Part II. Influence of the machined material. J Mater Process Technol 172

  20. Outeiro JC, Umbrello D, M’Saoubi R (2006) Experimental and numerical modelling of the residual stresses induced in orthogonal cutting of AISI 316L steel. Int J Mach Tools Manuf 46

Download references

Acknowledgments

The COMPACT project is a collaboration between Airbus UK (Project Co-ordinator), Alcan–Pechiney, Limerick University, University of Bristol, Enabling Process Technologies, Hannover University, EADS Germany, University of Patras, Alenia Aeronautica, Ultra RS, Institut National Polytechnique de Grenoble and the University of Sheffield. The project is jointly funded by the European Union Framework 6 initiative and the project partners.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. de León.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denkena, B., Boehnke, D. & de León, L. Machining induced residual stress in structural aluminum parts. Prod. Eng. Res. Devel. 2, 247–253 (2008). https://doi.org/10.1007/s11740-008-0097-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-008-0097-1

Keywords

Navigation