Skip to main content
Log in

Influences on specific cutting forces and their impact on the stability behaviour of milling processes

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

To withstand global competition, nowadays it is essential for companies to assure high productivity and high quality. To reach this aim permanent technical innovation and further developments are necessary. In machining industry and especially in the field of milling the development of possibilities to increase chip removal is the major goal. The optimisation of the cutting process is one way to achieve this aim. Here, the use of stability prediction models is essential to reduce the effort in time and costs. To implement a stability prediction tool with a high accuracy in representing reality, all relevant influencing parameters and their interactions within the cutting process have to be analysed. This article describes one possibility for the experimental identification of instable milling processes. Furthermore, the influences of spindle speed and temperature on specific cutting forces and the temperature influence on the stability behaviour in milling processes are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schulz H (1989) Hochgeschwindigkeitsfräsen me-tallischer und nichtmetallischer Werkstoffe. Carl Hanser Verlag, München

    Google Scholar 

  2. Schulz H (1996) Hochgeschwindigkeitsbearbeitung. Carl Hanser Verlag, München

    Google Scholar 

  3. Schulz H, Spur G (1989) Aspects in cutting mechanism in high speed cutting. Ann CIRP 38:51–54

    Article  Google Scholar 

  4. Uhlmann E, Mense C (2007) Untersuchung der Fräsprozess—Maschineninteraktion zur Stabilitäts-analyse und Maschinenoptimierung. In: Uhlmann E (ed) Proceedings of 2nd Berliner Runde, Berlin

  5. Uhlmann E, Mense C, Rasper P (2008) Milling machine evolution based on process-machine inter-action analysis. In: Denkena B (ed) Proceedings of 1st international conference on PMI, Hannover

  6. Faassen RPH, van de Wouw N, Oosterling JAJ, Nijmeijer H (2003) Prediction of regenerative chatter by modelling and analysis of high-speed milling. Int J Mach Tools Manuf 43:1437–1446

    Article  Google Scholar 

  7. Weck M, Teipel K (1977) Dynamisches Verhalten spanender Werkzeugmaschinen. Springer, Berlin

    Google Scholar 

  8. Altintas Y (2000) Manufacturing automation - metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge

    Google Scholar 

  9. Insperger T, Stépán G (2000) Stability of the milling process. Period Polytech MechEng 44(1):47–57

    Google Scholar 

  10. Insperger T, Mann BP, Surmann T, Stépán G (2008) On the chatter frequencies of milling pro-cesses with runout. Int J Mach Tools Manuf 48:1081–1089

    Article  Google Scholar 

  11. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. Ann CIRP 53(2):619–642

    Article  Google Scholar 

  12. Faassen RPH (2007) Chatter prediction and control for high-speed milling—modelling and experiments. Dissertation, TU Eindhoven, Netherlands

  13. Uhlmann E, Mense C (2007) Analysis of the interaction between milling processes and milling machines for stability prediction and machine tool optimization. In: Proceedings of 2nd manufacturers engineering society international conference, Madrid

  14. Rudolph U (1993) Dynamisches Verhalten von Faserverbundkunstoff/Stahl-Fügestellen. Dissertation, TU Berlin

  15. Altintas Y, Budak E (1995) Analytical prediction of stability lobes in milling. Ann CIRP 44(1):357–362

    Article  Google Scholar 

  16. Zatarain M, Munoa J, Peigné G, Insperger T (2006) Analysis of the influence of mill helix angle on chatter stability. Ann CIRP 55(1):365–368

    Article  Google Scholar 

  17. Sims ND (2005) The self-excitation damping ratio: a chatter criterion for time-domain milling simulations. J Manuf Sci Eng, Trans ASME 127(3):433–445

    Article  Google Scholar 

  18. Amin AKMN, Abdelgadir M (2003) The effect of preheating of work material on chatter during end milling of medium carbon steel performed on a vertical machining center (VMC). J Manuf Sci Eng 125:674–680

    Article  Google Scholar 

  19. Venuvinod PK, Lau WS, Narasimha Reddy P, Rubenstein C (1982) On the formation of a fluid film at the chip tool interface in rotary machining. Ann CIRP 32:59–64

    Article  Google Scholar 

  20. Gatto A, Iuliano L (1994) Chip Formation analysis in high speed machining of a nickel base superalloy with silicon carbide Whisker-Reinforced Alumina. Int J Mach Tools Manuf 34:1147–1161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rasper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uhlmann, E., Rasper, P. Influences on specific cutting forces and their impact on the stability behaviour of milling processes. Prod. Eng. Res. Devel. 5, 175–181 (2011). https://doi.org/10.1007/s11740-010-0296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-010-0296-4

Keywords

Navigation