Skip to main content
Log in

Oscillator-based approach for modeling process dynamics in NC milling with position- and time-dependent modal parameters

  • Computer Aided Engineering
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Oscillator models provide an efficient approach for simulating the dynamic behaviour of the machine, tool, or workpiece. In their application, however, these models are usually limited to describing the vibration behaviour at one specific position since they do not contain any information about the structure of the machine tool or the workpiece. Additionally, the variation in time dependent parameters caused by the material removal process is not taken into account. In this paper, an adapted model, which takes the position- and time-dependent modal parameters during NC milling into account, is presented and its experimental validation with respect to the machining of thin-walled components is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brecher C, Esser M, Witt S (2009) Interaction of manufacturing process and machine tool. CIRP Ann Manuf Technol 58(2):588–607

    Article  Google Scholar 

  2. Kakinuma Y, Sudo Y, Aoyama T (2011) Detection of chatter vibration in end milling applying disturbance observer. CIRP Ann Manuf Technol 60(1):109–112

    Article  Google Scholar 

  3. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual Machine Tool. CIRP Ann Manuf Technol 54(2):115–138

    Article  Google Scholar 

  4. Altintas Y, Weck M (2004) Chatter stability of metal cutting and grinding. CIRP Ann Manuf Technol 53(2):619–642

    Article  Google Scholar 

  5. Biermann D, Surmann T, Kehl G (2008) Oscillator model of machine tools for the simulation of self excited vibrations in machining processes. In: 1st international conference on process machine interactions, Hannnover, pp 23–29

  6. Smith KS, Schmitz TL (2009) Machining dynamics: frequency response to improved productivity. Springer, Berlin

  7. Klocke F, Kratz S, Veselovac D (2010) FEM simulation and experimental evaluation of a thin walled components dynamic behaviour. In: 2nd international conference on process machine interactions, Vancouver

  8. Gonzalo O, Peigne G, Gonzalez D (2006) Thin-walled features high speed machining simulation. In: CIRP international workshop on modeling of machining operations, Bled, pp 123–130

  9. Denkena B, Schmidt C (2007) Experimental investigation and simulation of machining thin-walled workpieces. Prod Eng Res Devel 1(4):343–350

    Article  Google Scholar 

  10. Henninger C, Eberhard P (2008) Analysis of dynamic stability for milling processes with varying workpiece dynamics. J Appl Mat Mech 8(1):10367–10368

    Google Scholar 

  11. Atlar S, Budak E, Özgüven HN (2008) Modeling part dynamics and chatter stability in machining considering material removal. In: 1st international conference on process machine interactions, Hannover

  12. Biermann D, Kersting P, Surmann T (2010) A general approach to simulating workpiece vibrations during five-axis milling of turbine blades. CIRP Ann Manuf Technol 59(1):125–128

    Article  Google Scholar 

  13. Hartung F, Insperger T, Stepan G, Turi J (2006) Approximate stability charts for milling processes using semi-discretization. Appl Math Comput 174(1):51–73

    Article  MathSciNet  MATH  Google Scholar 

  14. Surmann T, Enk D (2007) Simulation of milling tool vibration trajectories along changing engagement conditions. Int J Mach Tool Manuf 47(9):1442–1448

    Article  Google Scholar 

  15. Arizmendi M et al. (2009) Model for surface topography prediction in peripheral milling considering tool vibration. CIRP Ann Manuf Technol 58(1):93–96

    Article  Google Scholar 

  16. Surmann T, Biermann D (2008) The effect of tool vibrations on the flank surface created by peripheral milling. CIRP Ann Manuf Technol 57(1):375–378

    Article  Google Scholar 

  17. Haake F, (1983) Einführung in die theoretische Physik. Physik Verlag, Weinheim

    Google Scholar 

Download references

Acknowledgments

This work is based on the research projects BI 498/5-2 “‘Entkoppelte Oszillatormodelle als effizientes Ersatzsystem zur Bestimmung von Stabilitätsdia-grammen für die NC-Fräsbearbeitung dünnwandiger Bauteile” and TR 10 TP T3 “Erweiterung der Frässimulation zur Bearbeitung von Leichtbaukomponenten unter Berücksichtigung von Werkzeug- und Maschineneigenschaften” which are kindly funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Surmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biermann, D., Surmann, T. & Kersting, P. Oscillator-based approach for modeling process dynamics in NC milling with position- and time-dependent modal parameters. Prod. Eng. Res. Devel. 7, 417–422 (2013). https://doi.org/10.1007/s11740-013-0454-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-013-0454-6

Keywords

Navigation