Skip to main content
Log in

Comparison of rotational turning and hard turning regarding surface generation

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In this paper, two different turning processes namely rotational turning and hard turning are compared to each other regarding surface generation aspects. By experiments it is shown that, with higher feed rates, rotational turning yields same surface quality as hard turning. Feed rates can be chosen six times higher in rotational turning than in conventional hard turning without losses in the surface roughness quality. Also experiments reveal that the tool wear in rotational turning has a beneficial effect on the surface roughness. A corresponding explanation model is thereby presented which takes the specific tool/work piece engagement in rotational turning into account. Furthermore, it is shown that rotational turning has negative effects on the surface integrity. The phase transformation zones (“white layers”) are thicker in rotational turned parts than in hard turned parts. Also the level of tensile residual stress in rotational turning is higher than in hard turning. Both effects are probably caused by high thermal material loads in rotational turning due to increased friction. However, the results of this paper show that rotational turning has a high potential to become an efficient alternative to hard turning, especially when it comes to large scale production of simple shaped parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

agr :

Depth of grooves

ap :

Depth of cut

f:

Feed

r:

Radius

rvirt :

Virtual tool corner radius in rotational turning

rε :

Tool corner radius

Ra:

Average roughness

Rkin :

Kinematic roughness

RSm:

Average groove width

Rt :

Theoretical roughness

Rz:

Average roughness depth

n1 :

Work piece revolution

n2 :

Tool revolution

vc :

Cutting speed

VB:

Width of flank wear

λ:

Helix angle

λc :

Cut-off length

References

  1. Guo YB, Warren AW (2008) The impact of surface integrity by hard turning vs. grinding on fatigue damage mechanisms in rolling contact. Surf Coat Technol 203:291–299. doi:10.1016/j.surfcoat.2008.09.005

    Article  Google Scholar 

  2. Stier H (1989) Cubic boron nitride to turn heat treated steel (column). Mod Mach Shop 4:1989

    Google Scholar 

  3. Denkena B, Boehnke D, Meyer R (2008) Reduction of wear induced surface zone effects during hard turning by means of new tool geometries. Prod Eng Res Dev 2:123–132. doi:10.1007/s11740-008-0089-1

    Article  Google Scholar 

  4. Brandt D (1995) Randzonenbeeinflussung beim hartdrehen. VDI, Duesseldorf

    Google Scholar 

  5. Bartarya G, Choudhury SK (2012) State of the art in hard turning. Int J Mach Tools Manuf 53:1–14. doi:10.1016/j.ijmachtools.2011.08.019

    Article  Google Scholar 

  6. Jochmann S (2001) Untersuchungen zu Prozess- und Werkzeugauslegung beim Hochpräzisionshartdrehen. Shaker, Aachen

    Google Scholar 

  7. Kummer N (2004) Verfahren und Vorrichtung zum spanenden Bearbeiten rotationssymmetrischer Flächen eines Werkstücks. Patent DE102004026675C5

  8. Klocke F, Bergs T, Degen F, Ganser P (2013) Presentation of a novel cutting technology for precision machining of hardened, rotationally symmetric parts. Prod Eng Res Dev 7:177–184. doi:10.1007/s11740-012-0438-y

    Article  Google Scholar 

  9. Deutsches Institut für Normung e.V. (1998) Geometrical product specifications (GPS)—surface texture: profile method—terms, definitions and surface texture parameters. DIN EN ISO 4287

  10. Deutsches Institut für Normung e.V. (1998) Geometrical product specifications (GPS)—surface texture: profile method—rules and procedures for the assessment of surface texture. DIN EN ISO 4288

  11. Pavel R, Marinescu I, Deis M, Pillar J (2005) Effect of tool wear on surface finish for a case of continuous and interrupted hard turning. J Mater Process Technol 170:341–349. doi:10.1016/j.jmatprotec.2005.04.119

    Article  Google Scholar 

  12. Ramesh A, Melkote SN, Allard LF, Riester L, Watkins TR (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng A390:88–97

    Article  Google Scholar 

  13. Tomlinson WJ, Blunt LA, Spraggett S (1989) White layers on surface of ground EN24 steel—microstructure, composition, internal stress, and corrosion properties. Surf Eng 5(3):229–233

    Article  Google Scholar 

  14. Shaw MC, Vyas A (1994) Heat-affected zones in grinding steel. Ann CIRP 43(1):279–282

    Article  Google Scholar 

  15. Snoeys R, Leuven K, Maris M, Peters J (1978) Thermally induced damage in grinding. Ann CIRP 27:571–581

    Google Scholar 

  16. Klocke F, Brinksmeier E, Weinert E (2005) Capability profile of hard cutting and grinding processes. Ann CIRP 54(2):22–45

    Article  Google Scholar 

  17. Smith S, Melkote SN, Curzio L, Watkins ET, Allard R, Riester L (2007) Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance. Mater Sci Eng A459:337–346

    Article  Google Scholar 

  18. Guo YB, Schwach DW (2005) An experimental investigation of white layer on rolling contact fatigue using acoustic emission technique. Int J Fatigue 27:1051–1061

    Article  Google Scholar 

  19. Chou YK, Evans CJ (1999) White layers and thermal modelling of hard turned surfaces. Int J Mach Tools Manuf 39:1863–1881

    Article  Google Scholar 

  20. Liermann J (1998) Hartdrehen wälzbelasteter oberflächen. Shaker, Aachen

    Google Scholar 

  21. Gunnberg F, Escursell M, Jacobson M (2006) The influence of cutting parameters on residual stresses and surface topography during hard turning of 18MnCr5 case carburised steel. J Mater Process Technol 174:82–90. doi:10.1016/j.jmatprotec.2005.02.262

    Article  Google Scholar 

  22. Dahlman P, Gunnberg F, Jacobson M (2003) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147:181–184

    Article  Google Scholar 

  23. Hua J, Shivpuria R, Cheng X, Bedekar V, Matsumoto Y, Hashimoto F, Watkins TR (2004) Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mater Sci Eng A394:238–248

    Google Scholar 

  24. Tönshoff HK, Arendt C, Armor AB (2000) Cutting of hardened steel. Ann CIRP 46(2):547–566

    Article  Google Scholar 

  25. Röttger K (2003) Walzen hartgedrehter Oberflächen. Shaker, Aachen

    Google Scholar 

  26. Brinksmeier E, Garbrecht M, Meyer D, Dong J (2007) Surface hardening by strain induced martensitic transformation. Prod Eng Res Dev 2:109–116

    Article  Google Scholar 

  27. Nowag L, Sölter J, Brinksmeier E (2007) Influence of turning parameters on distortion of bearing rings. Prod Eng Res Dev 1:135–139. doi:10.1007/s11740-007-0009-9

    Article  Google Scholar 

  28. Kohlhoff T, Sölter J, Brinksmeier E (2011) Influence of the turning process on the distortion of disks for gear manufacture. Prod Eng Res Dev 5:613–620. doi:10.1007/s11740-011-0336-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Degen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Degen, F., Klocke, F., Bergs, T. et al. Comparison of rotational turning and hard turning regarding surface generation. Prod. Eng. Res. Devel. 8, 309–317 (2014). https://doi.org/10.1007/s11740-014-0530-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0530-6

Keywords

Navigation