Skip to main content

Advertisement

Log in

Optimized density profiles for powder metallurgical gears

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

In gear production, resource efficiency considering material, energy and time can be achieved using a powder metallurgical process chain. Furthermore, powder metallurgical gears have a lower weight, which will improve the fuel efficiency of a gear box as well. Currently powder metallurgical gears are not used in series-production automobile gear boxes. The main reason for this is a lower expected tooth root fatigue strength, which can be increased using surface densification by rolling. The investigation of how the powder metallurgical (PM) gear manufacturing has to improve in order to gain the possible resource efficiency, is funded in the Priority Program "Resource efficient machine elements”. This paper considers a two-step approach to increase the tooth root fatigue strength of PM gears. The first step is to calculate the fatigue strength considering the density profile of the gear. This first step will result in a description of the optimal density profile. The second step is an investigation of how the density profile and the manufacturing properties can be influenced using different process designs. This step will result in a guideline to change the density profile to the one described in the first step. The combined knowledge of which density profile is necessary and how it can be achieved will give the chance to increase the tooth root fatigue strength of powder metallurgical gears. This paper considers the first part of both steps of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Behrens BA, Gastan E, Vahed N, Lange F (2010) Numerical analysis of the process chain for the production of PM components with integrated information storage. Prod Eng 4(5):477–482

    Article  Google Scholar 

  2. Beiss P (2003) Mechanische Eigenschaften von Sinterstählen

  3. Beiss P (2013) Pulvermetallurgische Fertigungstechnik. Springer Vieweg

  4. Beiss P, Zafari ALKBJ (2012) Fatigue behavior of a sintered steel containing 4 % Ni, 1.5 % Cu, 0.5 % Mo and 0.6 % C. Int J Powder Metal 48:19–34

    Google Scholar 

  5. DIN (1987) Begriffe und Bestimmungsgrößen für Stirnräder (Zylinderräder) und Stirnradpaare (Zylinderradpaare) mit Evolventenverzahnung

  6. Doege E, Behrens BA (2007) Handbuch Umformtechnik: Grundlagen, Technologien, Maschinen; mit 55 Tabellen. Springer, Berlin

    Google Scholar 

  7. Felten K (2008) Verzahntechnik: Das aktuelle Grundwissen über Herstellung und Prüfung von Zahnrädern, 2nd edn. Expert-Verl, Renningen

    Google Scholar 

  8. Fereshteh-Saniee F, Pillinger I, Hartley P (2004) Friction modelling for the physical simulation of the bulk metal forming processes

  9. Kauffmann P (2013) Walzen pulvermetallurgisch hergestellter Zahnräder. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule, Aachen

  10. Klocke F, König W (2005) Fertigungsverfahren: Umformen. Springer, Berlin

    Google Scholar 

  11. Klocke F, Gorgels C, Gräser E (2011) Study of tool design for surface densification of PM Gears

  12. Kotthoff G (2003) Neue Verfahren zur Tragfähigkeitssteigerung von gesinterten Zahnrädern. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule, Aachen

  13. Neumaier T (2003) Zur Optimierung der Verfahrensauswahl von Kalt-, Halbwarm- und Warmmassivumformverfahren. Ph.D. thesis, Universität, Hannover

  14. Neugebauer R, Klug D, Hellfritzsch U (2007) Description of the interactions during gear rolling as a basis for a method for the prognosis of the attainable quality parameters

  15. Strehl R (1997) Tragfähigkeit von Zahnrädern aus hochfestem Sinterstählen. Ph.D. thesis, Rheinisch-Westfälische Technische Hochschule, Aachen

  16. Strehl R (2012) Wirtschaftlichkeit von P/M-Verzahnungen. In Tagungsband zu: Aktuelle Entwicklungen beim Vorverzahnen 2012

  17. Tiedemann I, Hirt G, Kopp R, Michl D, Khanjari N (2007) Material flow determination for radial flexible profile ring rolling. Prod Eng 1(3):227–232

    Article  Google Scholar 

  18. Wimmer AJ (2006) Lastverluste von Stirnradverzahnungen: Konstruktive Einflüsse, Wirkungsgradmaximierung, Tribologie, FZG / FZG, Lehrstuhl für Maschinenelemente, Forschungsstelle für Zahnräder und Getriebebau, vol 152. Shaker, Aachen

    Google Scholar 

  19. Zafari A, Beiss PBCLK (2011) Assessing the fatigue strength of a sintered steel as affected by the highly stressed volume. pp 15–20. EPMA, Shrewsbury

Download references

Acknowledgments

This work is funded as the project “High-strength gears by powder metallurgical manufacturing processes” which is part of the Priority Program “Resource efficient machine elements” (SPP 1551) by the German Research Foundation (DFG). We thank GKN Sinter Metals for sintering and the institute “Werkstoffsynthese und Herstellungsverfahren (IEK-1)” of Forschungszentrum Jülich for hot isostatic pressing the fatigue specimen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gräser.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gräser, E., Hajeck, M., Bezold, A. et al. Optimized density profiles for powder metallurgical gears. Prod. Eng. Res. Devel. 8, 461–468 (2014). https://doi.org/10.1007/s11740-014-0543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0543-1

Keywords

Navigation