Skip to main content
Log in

Modeling and simulation of milling processes including process damping effects

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Especially in high speed milling of aluminum alloys in the aviation industry, chamfered milling tools have proven themselves. Due to the chamfer, an extended contact between the tool and the workpiece at the flank face is evoked, which leads to additional process damping forces opposed to tool vibrations. Hence, the cutting process shows improved stability characteristics. This article presents an approach for the identification and modeling of these process damping effects in transient milling simulations. For this purpose, a simulation- and experiment-based procedure for the identification of required simulation parameters depending on the tool chamfer geometry is introduced and evaluated. Finally, the identified parameters are used for transient simulations of milling processes with extended stability due to the tool chamfer. The suitability of the proposed identification method and simulation model for milling with process damping is finally proved by a comparison between simulations and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Malekian M, Park SS, Jun MB (2009) Modeling of dynamic micro-milling cutting forces. Int J Mach Tool Manuf 49:586–598

    Article  Google Scholar 

  2. Rahnama R, Sajjadi M, Park SS (2009) Chatter suppression in micro end milling with process damping. J Mater Process Technol 209:5766–5776

    Article  Google Scholar 

  3. Budak E, Tunc L (2010) Identification and modeling of process damping in turning and milling using a new approach. CIRP Ann-Manuf Technol 59:403–408

    Article  Google Scholar 

  4. Ahmadi K, Ismail F (2011) Analytical stability lobes including nonlinear process damping effect on machining chatter. Int J Mach Tool Manuf 51:296–308

    Article  Google Scholar 

  5. Tyler CT, Schmitz TL (2013) Analytical process damping stability prediction. J Manuf Process 15:69–76

    Article  Google Scholar 

  6. Denkena B, Bickel W, Sellmeier V (2012) Flank milling of compliant workpieces with chamfered tool. Prod Eng Res Dev 6:403–412

    Article  Google Scholar 

  7. Sellmeier V (2012) Einfluss der Werkzeuggestalt auf die dynamische Stabilität des Fräsprozesses. Dr.-Ing. Diss., Leibniz Universität Hannover

  8. Denkena B, Jivishov V, Clausen M (2003) Deviation analysis of FEM based cutting simulation. In: 6th ESAFORM conference on material forming, Salerno, Italy

  9. Biermann D, Hess S, Tiffe M, Wagner T, Zabel A (2012) Statistically assisted identification of the material and friction parameters for modeling metal cutting processes using the fea. International conference on thermo-mechanically graded materials, 1, pp 25–30

  10. Maurel-Pantel A, Fontaine M, Thibaud S, Gelin JC (2012) 3D FEM simulations of shoulder milling operations on a 304L stainless steel. Simul Model Pract Theory 22:13–27

    Article  Google Scholar 

  11. Böß V, Ammermann C, Niederwestberg D, Denkena B (2012) Contact zone analysis based on multidexel workpiece model and detailed tool geometry representation. In: 3rd CIRP conference on process machine interactions. Procedia CIRP 4:40–44

  12. Weinert K, Guntermann G, Stautner M (2001) Effiziente Simulation der 5-Achsen-Simultan Fräsbearbeitung. 3D-Erfahrungsforum Werkzeug- und Formenbau. Begleitband 1:197–205

    Google Scholar 

  13. Altintas Y (2000) Manufacturing automation. Cambridge University Press, Cambridge

    Google Scholar 

  14. Biermann D, Surmann T, Kehl G (2008) Oszillatormodell für Werkzeugmaschinen zur Simulation von Zerspanprozessen. Entkopplung von Schwingungsmoden zur effizienten Berechnung der Prozessstabilität von Fertigungssystemen bei Einwirkung von Prozesskräften. wt Werkstattstechnik online 3:185–190

    Google Scholar 

  15. Altintas Y, Eynian M, Onozuka H (2008) Identification of dynamic cutting force coefficients and chatter stability with process damping. CIRP Ann-Manuf Technol 57(1):371–374

    Article  Google Scholar 

  16. Turkes E, Orak S, Neseli S, Yaldiz S (2012) Decomposition of process damping ratios and verification of process damping model for chatter vibration. Measurement 45(6):1380–1386

    Article  Google Scholar 

  17. Tyler CT, Schmitz TL (2013) Analytical process damping stability prediction. J Manuf Process 15(1):69–76

    Article  Google Scholar 

  18. Kallage F (2007) Einsatz magnetischer Aktor- und Führungseinheiten zur Erhöhung der Bahngenauigkeit von Hochgeschwindigkeitsfräsmaschinen. Dr.-Ing. Diss., Leibniz Universität Hannover

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for their financial support of the presented research project (DE 447/80-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Bickel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denkena, B., Bickel, W. & Grabowski, R. Modeling and simulation of milling processes including process damping effects. Prod. Eng. Res. Devel. 8, 453–459 (2014). https://doi.org/10.1007/s11740-014-0544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0544-0

Keywords

Navigation