Skip to main content
Log in

Analysis of the friction behavior of DLC in warm bulk forming by using the ring compression test

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The reduction of die wear is an effective way to decrease costs within bulk forming processes. Therefore, specific tool materials and heat treatments as well as special coatings are used to prolong the lifetime of the tools. Diamond-like carbon (DLC) coatings show high hardness and superior frictional behavior. However, these coatings seem to be inappropriate for hot forming due to degradation processes at elevated temperatures. But for warm forming, due to the lower temperature input into the cavity, DLC might be an appropriate coating. Friction influences the shear stresses on the cavity surface and is therefore an important factor for reducing die wear. Hence, the analysis of the frictional behavior of DLC coatings within warm forming by using the ring compression test will be presented within this paper. An amorphous hydrogenated carbon coating and six metallic doped amorphous hydrogenated carbon coatings (Cr, V and W each in two variants) are compared to CrN and no coating. Firstly, nomograms are graphed by the use of finite-element-analysis. Thereafter two test series are carried out varying forming temperature and lubrication. The results show that DLC coatings with and without metallic doping are able to reduce friction in warm forming. Within the investigations, an amorphous hydrogenated carbon doped with 15 % chromium shows the lowest friction factor and is able to reduce the friction factor compared to no coating by up to 64 % within warm forming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Doege E, Behrens B-A (2010) Handbuch Umformtechnik—Grundlagen, Technologien, Maschinen, 2nd edn. Springer, Berlin

    Google Scholar 

  2. Behrens B-A, Bräuer G, Paschke H, Bistron M (2011) Reduction of wear at hot forging dies by using coating systems containing boron. Prod Eng 5:497–506. doi:10.1007/s11740-011-0308-z

    Article  Google Scholar 

  3. Behrens B-A, Yilkiran T (2012) Influence of the fabrication method on the wear resistance of hot forging dies. Prod Eng 6:267–276. doi:10.1007/s11740-012-0373-y

    Article  Google Scholar 

  4. Andreas K, Merklein M (2014) Improvement of surface integrity of cold forging tools by adaption of tool making process. Prod Eng 8:131–141. doi:10.1007/s11740-013-0522-y

    Article  Google Scholar 

  5. Donnet C, Erdemir A (2008) Diamond-like carbon films: a historical overview. In: Donnet C, Erdemir A (eds) Tribology of diamond-like carbon films: fundamentals and application. Springer Science + Business Media, New York, pp 1–10

    Chapter  Google Scholar 

  6. Ronkainen H, Holmberg K (2008) Environmental and thermal effects on the tribological performance of DLC coatings. In: Donnet C, Erdemir A (eds) Tribology of diamond-like carbon films: fundamentals and application. Springer Science + Business Media, New York, pp 155–200

    Chapter  Google Scholar 

  7. Velkavrh I, Kalin M, Vizintin J (2008) The performance and mechanisms of DLC-coated surfaces in contact with steel in boundary-lubrication conditions—a review. J Mech Eng 3:189–206

    Google Scholar 

  8. VDI2840 (2012) Kohlenstoffschichten: Grundlagen, Schichttypen und Eigenschaften. Verein Deutscher Ingenieure, Beuth

    Google Scholar 

  9. Robertson J (2008) Classification of diamond-like carbons. In: Donnet C, Erdemir A (eds) Tribology of diamond-like carbon films: fundamentals and application. Springer Science + Business Media, New York, pp 13–24

    Chapter  Google Scholar 

  10. Robertson J (2002) Diamond-like amorphous carbon. Mater Sci Eng 37:129–281

    Article  Google Scholar 

  11. Iriyama Y, Sakurai S, Yoshihara S, Tsuda S (2008) Reduction of friction coefficient of magnesium alloy sheet by DLC coating with low-temperature plasma. J Photopolym Sci Technol 2:245–250

    Article  Google Scholar 

  12. Horiuchi T, Yoshihara S, Iriyama Y (2012) Dry deep drawability of A5052 aluminum alloy sheet with DLC-coating. Tribol Manuf Process 286–287:79–83. doi:10.1016/j.wear.2011.07.005

    Google Scholar 

  13. Sresomroeng B, Premanond V, Kaewtatip P, Khantachawana A, Koga N, Watanabe S (2010) Anti-adhesion performance of various nitride and DLC films against high strength steel in metal forming operation. Diam Relat Mater 7–9:833–836. doi:10.1016/j.diamond.2010.02.008

    Article  Google Scholar 

  14. Wank A, Reisel G, Wielage B (2006) Behaviour of DLC coatings in lubricant free cold massive forming of aluminum. Surf Coat Technol 201:822–827. doi:10.1016/j.surfcoat.2005.12.043

    Article  Google Scholar 

  15. Matsumoto R, Osakada K (2002) Lubrication and friction of magnesium alloys in warm forging. CIRP Ann Manuf Technol 51:223–226. doi:10.1016/S0007-8506(07)61504-2

    Article  Google Scholar 

  16. Reisel G, Wielage B, Steinhäuser S, Hartwig H (2003) DLC for tools protection in warm massive forming. Diam Relat Mater 3–7:1024–1029

    Article  Google Scholar 

  17. Reisel G, Steinhäuser S, Wielage B (2004) The behaviour of DLC under high mechanical and thermal load. Diam Relat Mater 4–8:1516–1520. doi:10.1016/j.diamond.2003.11.043

    Article  Google Scholar 

  18. Krause A, Stonis M, Behrens B-A (2013) Diamond-like Carbon als Verschleißschutzschicht für die Halbwarmmassivumformung. SchmiedeJOURNAL 1:40–43

    Google Scholar 

  19. Krause A, Behrens B-A, Ullmann G, Bräuer G, Weirauch R (2013) Diamond-like-Carbon-Verschleißschutzschichten—Temperaturabhängigkeit Chrom-dotierter DLC-Verschleißschutzschichten bei der Massivumformung. wt Werkstattstechnik online 103:450–455

  20. Male AT, Cockcroft MG (1964) A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation. J Inst Metals 93:38–46

    Google Scholar 

  21. Burgdorf M (1967) Über die Ermittlung des Reibwertes für Verfahren der Massivumformung durch den Ringstauchversuch. Industrie-Anzeiger 5:15–20

    Google Scholar 

  22. Noh JH, Seo JM, Hwang BB (2011) FE analysis of the sensitivity of friction calibration curves to dimensional changes in a ring compression test. Met Mater Int 17:187–197. doi:10.1007/s12540-011-0402-y

    Article  Google Scholar 

  23. Laackman B, Sturzenhecker H (1997) Optimierte Auswertmethode zur Bestimmung des Reibfaktors mit dem Ringstauchversuch. Tribologie und Schmiertechnik 44:170–173

    Google Scholar 

  24. Steiner L, Bouvier V, May U, Hegadekatte V, Huber N (2010) Modelling of unlubricated oscillating sliding wear of DLC-coatings considering surface topography, oxidation and graphitization. Wear 9–10:1184–1194. doi:10.1016/j.wear.2009.12.026

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the German Research Foundation (Deutsche Forschungsgemeinschaft—DFG) for the funding of the research project “Untersuchungen zur Vorformung von Stahl im Halbwarmtemperaturbereich mit modifizierten kohlenstoffbasierten Schichtsystemen” (DFG Be 11691/100-1, BR2178/13-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Krause.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krause, A., Weirauch, R., Bräuer, G. et al. Analysis of the friction behavior of DLC in warm bulk forming by using the ring compression test. Prod. Eng. Res. Devel. 9, 41–49 (2015). https://doi.org/10.1007/s11740-014-0579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-014-0579-2

Keywords

Navigation