Skip to main content
Log in

Evaluation of different approaches for modeling phase transformations in machining simulation

  • Prouction Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Presently, the main mechanism for phase transformations in machining of steels is not absolutely clear and is still subject to research. This paper presents, three different approaches for modeling phase transformations during heating in machining operations. However, the main focus lies on two methods which can be classified into a stress related method and a thermal activation related method for the description of austenitization temperature. Both approaches separately showed very good agreements in the simulations compared to the experimental validation but were never compared in a simulation. The third method is a pre-calculated phase landscape assigning the transformation results based on a micro-mechanically motivated constitutive model to the workpiece in dependence on the temperature and strain history. The paper describes all three models in detail, and the results are also presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Umbrello D, Filice L (2009) Improving surface integrity in orthogonal machining of hardened AISI 52100 steel by modeling white and dark layers formation. Ann CIRP 58(1):73–76

    Article  Google Scholar 

  2. Attanasio A, Umbrello D, Cappellini C, Rotella G, M’Saoubi R (2011) Tool wear effects on white and dark layer formation in hard turning of AISI 52100 steel. Wear 286–287:98–107

    Google Scholar 

  3. Schulze V, Michna J, Zanger F, Pabst R (2011) 2011, Modeling the process-induced modifications of the microstructure of work piece surface zones in cutting processes. Adv Mater Res 223:371–380

    Article  Google Scholar 

  4. Caruso S, Di Renzo S, Umbrello D, Jayal AD, Dillon OW, Jawahir IS (2011) Finite element modeling of microstructural changes in hard turning. Adv Mater Res 223:960–968

    Article  Google Scholar 

  5. Ramesh A, Melkote SN (2008) Modeling of white layer formation under thermally dominant conditions in orthogonal machining of hardened AISI 52100 steel. Int J Mach Tools Manuf 48:402–414

    Article  Google Scholar 

  6. Mahnken R, Wolff M, Cheng C (2013) A multi-mechanism model for cutting simulations combining visco-plastic asymmetry and phase transformation. Int J Solids Struct 50:3045–3066

    Article  Google Scholar 

  7. Uhlmann E, Mahnken R, Ivanov IM, Cheng C (2013) FEM modeling of hard turning with consideration of viscoplastic asymmetry and phase transformation. J Mach Eng 13(1):80–92

    Google Scholar 

  8. Leblond JB, Devaux J (1984) A new kinetic model for anisothermal metallurgical transformations in steels including effect of austenite grain size. Acta Metall 32:137–146

    Article  Google Scholar 

  9. Koistinen DP, Marburger RE (1959) A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metall 7:59–60

    Article  Google Scholar 

  10. Griffiths BJ (1987) Mechanisms of white layer generation with reference to machining and deformation processes. Transactions of the ASME. J Tribol 109:525–530

    Article  Google Scholar 

  11. Leblond JB, Mottet G, Devaux J (1986) A theoretical and numerical approach to the plastic behaviour of steels during phase transformations-I. Derivation of general relations. J Mech Phys Sol 34:395–409

    Article  MATH  Google Scholar 

  12. Mioković T (2005) Analyse des Umwandlungsverhaltens bei ein-und mehrfacher Kurzheithärtung bzw, Läserstrahlhärtung des Stahls 42CrMo4. Dissertation, Universität Karlsruhe

  13. Avrami M (1939) Kinetics of phase chance. J Chem Phys 7(12):1103–1112

    Article  Google Scholar 

  14. Skrotzki B (1992) Temperaturen und verlauf der martensitischen umwandlung in eisenlegierungen. Fortschritt Berichte VDI, Reihe 5(269):40–44

    Google Scholar 

  15. Michna J (2014) Numerische und experimentelle Untersuchung zerspanungsbedingter Gefügeumwandlungen und Modellierung des thermos-mechanischen Lastkollektivs beim Bohren von 42CrMo4. Dissertation, Karlsruher Institut für Technologie

  16. Wolff M, Böhm M, Boettcher S (2007) Phase transformations in steel in the multi-phase case, general modelling and parameter identification. Berichte aus der Technomathematik, FB 3, Universität Bremen

  17. Bain EC (1924) Nature of martensite. Trans AIME 70:25–46

    Google Scholar 

  18. Bartel T, Menzel A (2015) A finite deformation framework for martensitic phase transformations interacting with plasticity based on representative deformation directions. Submitted for publication

  19. Zanger Z (2011) Numerical analysis of the influence of Johnson-Cook material parameters on the surface integrity of Ti-6A-4V. Proc Eng 19:306–311

    Article  Google Scholar 

  20. Autenrieth H (2010) Numerische Analyse der Mikrozerspanung am Beispiel von normalisiertem C45E. Dissertation, Universität Karlsruhe

  21. Hortig C (2011) Local and non-local thermomechanical modelling and finite-element simulation of high-speed cutting. PhD Thesis, TU Dortmund University, ISBN: 978-3-9211823-54-5

  22. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th international symposium on ballistics, The Hague, pp 541–547

  23. Huang Y, Liang S (2003) Force modeling in shallow cuts with large negative rake angle and large nose radius tools. Int J Adv Manuf Tech 22:623–626

    Article  Google Scholar 

  24. Holtermann R, Schumann S, Menzel A, Biermann D (2013) Modelling, simulation and experimental investigation of chip formation in internal traverse grinding. Prod Eng Res Devel 7(2–3):251–263. doi:10.1007/s11740-01

    Article  Google Scholar 

  25. Uhlmann E, Graf von der Schulenburg M, Gerstenberger R (2009) Investigations on the adjustment of the modelling section in 2D simulations of milling processes. Int J Mach Mach Mater 6(1–2):69–82

    Google Scholar 

  26. Umbrello D, Jayal AD, Caruso S, Dillon OW, Jawahir IS (2010) Modeling of white and dark layer formation in hard machining of AISI 52100 steel. Mach Sci Technol 14:128–147

    Article  Google Scholar 

  27. Ramesh A, Melkote SN, Allar LF, Riester L, Watkins TR (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng Part A 390(1–2):88–97

    Article  Google Scholar 

  28. Klocke F, Brinksmeier E, Weinert K (2005) Capability Profile of Hard Cutting and Grinding Processes. CIRP Ann Manuf Technol 54:22–45

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of the Deutsche Forschungsgemeinschaft in the DFG Priority Program CuTSim—“Modeling, Simulation and Compensation of Thermal Effects for Complex Machining Processes” (SPP 1480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Schulze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, V., Uhlmann, E., Mahnken, R. et al. Evaluation of different approaches for modeling phase transformations in machining simulation. Prod. Eng. Res. Devel. 9, 437–449 (2015). https://doi.org/10.1007/s11740-015-0618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-015-0618-7

Keywords

Navigation