Skip to main content
Log in

Volumetric measurement of the transient thermo-elastic machine tool behavior

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

This paper suggests a new mathematical method to calculate volumetric machine tool motion errors using rigid body kinematics. Different internal and external heat sources lead to a nonhomogeneous transient temperature distribution within the machine structure. This results in transient tool-center-point deviations during measurement time, directly affecting the measurement uncertainty. Therefore investigations of the volumetric thermo-elastic machine tool behavior are often limited as they imply a stable thermal machine state. In order to still allow a volumetric measurement, an approach is presented which enhances the common evaluation method (using rigid body models) by an interpolation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zein A (2012) Transition towards energy efficient machine tools. Springer, Berlin

    Book  Google Scholar 

  2. Brian J et al (1990) International status of thermal error research. CIRP Ann Manuf Technol 39(2):645–656

    Article  MathSciNet  Google Scholar 

  3. Weck M et al (1995) Reduction and compensation of thermal errors in machine tools. CIRP Ann Manuf Technol 44(2):589–598

    Article  Google Scholar 

  4. Mayr J et al (2012) Thermal issues in machine tools. CIRP Ann Manuf Technol 61(2):771–791

    Article  MathSciNet  Google Scholar 

  5. ISO 230-3 (2007) Test code for machine tools—part 3: determination of thermal effects. Genf, Switzerland

  6. Li Y et al (2015) A review on spindle thermal error compensation in machine tools. Int J Mach Manuf 95:20–38

    Article  Google Scholar 

  7. Brecher C et al (2014) Temperaturstabile Werkzeugmaschinen—Messverfahren zur volumetrischen Korrektur thermoelastischer Verlagerungen. wt Werkstattstechnik 104(7/8):490–495

    Google Scholar 

  8. Brecher C et al (2015) Volumetric thermo-elastic machine tool behavior. Prod Eng Res Dev 9:119–124

    Article  Google Scholar 

  9. Mitsuishi M et al (2001) Development of an intelligent high-speed machining centre. CIRP Ann Manuf Technol 50(1):275–280

    Article  Google Scholar 

  10. Brecher C et al (2012) Machine integrated, direct measuring devices for the compensation of thermal deformation. In: Proceedings of the 12th euspen international conference, Strockholm, Schweden

  11. Delbressine FML et al (2006) Modelling thermomechanical behaviour of multi-axis machine tools. Precis Eng 30(1):47–53

    Article  Google Scholar 

  12. Gebhardt M et al (2014) Thermally caused location errors of rotary axes of 5-axis machine tools. Int J Autom Technol 8(4):511–522

    Article  Google Scholar 

  13. Schwenke H et al (2008) Geometric error measurement and compensation of machines—an update. CIRP Ann Manuf Technol 57(1):660–675

    Article  Google Scholar 

  14. Kreng VB (1994) A kinematic model for machine tool accuracy characterisation. Int J Adv Manuf Technol 9:79–86

    Article  Google Scholar 

  15. Chen JS (1993) Real-time compensation for time-variant volumetric errors on a machining center. J Eng Ind 115:472–479

    Article  Google Scholar 

  16. Gomez-Acedo E et al (2013) Methodology for the design of a thermal distortion compensation for large machine tools based in state-space representation with kalman filter. Int J Mach Tools Manuf 75:100–108

    Article  Google Scholar 

  17. ISO 230-1 (2012) Test code for machine tools—part 1: geometric accuracy of machines operating under no-load or quasi-static conditions. Genf, Switzerland

  18. Denavit J, Hartenberg RS (1955) A kinematic notation for lower-pair mechanisms base on matrices. J Appl Mech 77:215–221

    MathSciNet  MATH  Google Scholar 

  19. Schwenke H et al (2005) Error mapping of CMMs and machine tools by a single tracking interferometer. CIRP Ann Manuf Technol 54(1):475–478

    Article  Google Scholar 

  20. Sandwell D (1987) Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys Res Lett 14(2):139–142

    Article  Google Scholar 

Download references

Acknowledgments

The Authors want to thank the DFG (German Research Foundation) for financial support. The represented findings result from the subproject B06 Property model based compensation of the special research field SFB/Transregio 96 Thermo-energetic design of machine tools.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wennemer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brecher, C., Fey, M. & Wennemer, M. Volumetric measurement of the transient thermo-elastic machine tool behavior. Prod. Eng. Res. Devel. 10, 345–350 (2016). https://doi.org/10.1007/s11740-016-0666-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0666-7

Keywords

Navigation