Skip to main content
Log in

Friction in feed drives of machine tools: investigation, modeling and validation

  • Machine Tool
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Virtual simulation and optimization of the dynamic behavior of machine tools in the development phase is required to satisfy the increasing demands on machine tool performance. While mass and stiffness properties can be simulated with sufficient accuracy, often no suitable damping models are available for the components of machine tools. The commonly used linear damping models are predominantly linear hysteretic or viscous models. However, the linear damping models are often not appropriate to reflect the occurring nonlinear effects in machine tools with the required accuracy. The reason for these nonlinearities are predominantly the friction forces in feed drive components. To resolve these deficits, the friction in feed drive components is comprehensively investigated in this paper, models for friction forces are identified and coupled with a reduced, flexible multi-body system. With the identified friction models the measured friction curves can be reproduced very precisely. The coupled, reduced, flexible multi-body model allows to simulate the nonlinear effects and to predict the dynamic behavior of machine tools with high accuracy. Consequently, a further important step towards accurate virtual simulation of machine tools is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Altintas Y, Brecher C, Weck M, Witt S (2005) Virtual machine tool. CIRP Ann Manuf Technol 54(2):115–138

    Article  Google Scholar 

  2. Weule H, Albers A, Haberkern A, Neithardt W, Emmrich D (2002) Computer aided optimisation of the static and dynamic properties of parallel kinematics. In: Proceedings of the 3rd Chemnitz parallel kinematic seminar, p 527–546

  3. Oertli T (2008) Strukturmechanische Berechnung und Regelungssimulation von Werkzeugmaschinen mit elektromechanischen Vorschubantrieben. No. 216 in Forschungsberichte IWB, Herbert Utz, Munich

  4. Queins M (2005) Simulation des dynamischen Verhaltens von Werkzeugmaschinen mit Hilfe flexibler Mehrkoerpermodelle. No. 12/2005 in Ergebnisse aus der Produktionstechnik, Shaker, Aachen

  5. Siedl DJ (2008) Simulation des dynamischen Verhaltens von Werkzeugmaschinen waehrend Verfahrbewegungen. No. 213 in Forschungsberichte IWB, Herbert Utz, Munich

  6. Gawronski WK (2004) Advanced structural dynamics and active control of structures. Springer, Berlin

    Book  MATH  Google Scholar 

  7. Adhikari S (2000) Damping models for structural vibration. Dissertation University of Cambridge

  8. Rayleigh JWS (1877) The theory of sound (two volumes). Macmillan, London

    Google Scholar 

  9. Groche P, Hofmann T (2005) A new method to determine the dynamic properties of profiled guideways and guide slide bearings. Prod Eng Res Devel 12:187–190

    Google Scholar 

  10. Brecher C, Fey M, Baeumler S (2013) Damping models for machine tool components of linear axes. CIRP Ann Manuf Technol 62:399–402

    Article  Google Scholar 

  11. Ewins DJ (1984) Modal testing: theory and practice. Research Studies Press Ltd, Taunton

    Google Scholar 

  12. Varanasi KK, Nayfeh SA (2004) The dynamics of lead-screw drives: low-order modeling and experiments. J Dyn Syst Meas Control 126:388–396

    Article  Google Scholar 

  13. MSCSoftware Corporation (2011) MD Nastran 2011 & MSC Nastran 2011 dynamic analysis user’s guide. 2 MacArthur Place, Santa Ana, CA 92707

  14. Kunc M (2013) Identifikation und Modellierung von nichtlinearen Daempfungseffekten in Vorschubachsen fuer Werkzeugmaschinen. No. 11/2013 in Ergebnisse aus der Produktionstechnik, Apprimus, Aachen

  15. Niehues K, Rebelein C, Zaeh MF (2015) Identification of local damping models of machine tools by a sequential assembling process. In: Proceedings of the 4th international conference on virtual machining process technology, Vancouver

  16. Lampaert V, Swevers J, Al-Bender F (2002) Modification of the leuven integrated friction model structure. IEEE Trans Autom Control 47(4):683–687

    Article  MathSciNet  Google Scholar 

  17. Björklund S (1997) A random model for micro-slip between nominally flat surfaces. ASME J Tribol 119:726–732

    Article  Google Scholar 

  18. Dahl PR (1977) Measurement of solid friction parameters of ball bearings. In: Proceedings of symposium on incremental motion control systems and devices, p 49–60

  19. Canudas de Wit C, Olsson H, Aström KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40(3):419–425

    Article  MathSciNet  MATH  Google Scholar 

  20. Armstrong-Hélouvry B (1991) Control of machines with friction. Kluwer, Boston

    Book  MATH  Google Scholar 

  21. Swevers J, Al-Bender F, Gansemann CG, Prajogo T (2000) An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans Autom Control 45(4):675–686

    Article  MathSciNet  MATH  Google Scholar 

  22. Fey M (2015) Identifikation geeigneter parametrierter Daempfungsmodelle fuer Komponenten einer Linearachse. Ergebnisse aus der Produktionstechnik, Apprimus, Aachen

  23. Niehues K (2015) Identifikation linearer Daempfungsmodelle fuer Werkzeugmaschinenstrukturen. Forschungsberichte IWB, Herbert Utz, Munich

  24. Craig RR, Bampton MCCC (1968) Coupling of structures for dynamic analyses. AIAA J 6(7):1313–1319

    Article  MATH  Google Scholar 

  25. Besselink B, Tabak U, Lutowska A, van de Wouw N, Nijmeijer H, Rixen DJ, Hochstenbach ME, Schilders WHA (2013) A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J Sound Vib 332:4403–4422

    Article  Google Scholar 

  26. Schwarz S (2015) Prognosefaehigkeit dynamischer Simulationen von Werkzeugmaschinenstrukturen. Forschungsberichte IWB, Herbert Utz, Munich

  27. Okwudire CE, Altintas Y (2009) Hybrid modeling of ball screw drives with coupled axial, torsional and lateral dynamics. ASME J Mech Des 131:071002-1–071002-9

    Article  Google Scholar 

  28. Maia NMM, Silva JMM (1997) Theoretical and experimental modal analysis. Research Studies Press Ltd, Taunton

    Google Scholar 

  29. Schwarz S, Sing A, Zaeh MF (2014) Identification and evaluation of uncertainties and errors in dynamic models of casted machine tool components. Prod Eng Res Devel 8:175–185

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the German Research Foundation (DFG) within the research unit FOR-1087 “Damping effects in Machine Tools”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rebelein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebelein, C., Zaeh, M.F. Friction in feed drives of machine tools: investigation, modeling and validation. Prod. Eng. Res. Devel. 10, 497–507 (2016). https://doi.org/10.1007/s11740-016-0678-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0678-3

Keywords

Navigation