Skip to main content
Log in

Modeling of process forces with respect to technology parameters and tool wear in milling Ti6Al4V

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

The usage and importance of titanium materials is increasing worldwide. Titanium is particularly suitable for use in turbines and lightweight construction due to its high heat resistance and low density. However, its low thermal conductivity results in machining problems and short tool life due to the associated high mechanical and thermal tool loads. Knowledge about the mechanical tool load during the milling process is of vital importance to process design and modeling. This paper presents multivariate regression method to model the process forces involved in the titanium milling process with respect to various technology parameters. In particular, the resulting tool wear and its relationships with these process forces is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A:

Cross section of undeformed chip (mm²)

ae :

Width of cut (mm)

ap :

Depth of cut (mm)

Fc :

Cutting force (N)

FcN :

Normal cutting force (N)

Fx :

Force in x-direction (N)

Fy :

Force in y-direction (N)

fz :

Feed per tooth (mm)

h:

Undeformed chip thickness (mm)

K:

Intercept

Kae:

Regression coefficient

Kap:

Regression coefficient

Kfz:

Regression coefficient

Kvc:

Regression coefficient

KVB:

Regression coefficient

KA:

Regression coefficient

V:

Material removal (cm3)

VB:

Width of flank wear land VB (µm)

vc :

Cutting speed (m/min)

φ:

Entry angle (°)

References

  1. Hanapia S, Tijania AS, Abdol Rahima AH, Wan Mohamed WAN (2015) Comparison of A prototype PEM fuel cell powertrain power demand and hydrogen consumption based on inertia dynamometer and on-road tests, 2015 International Conference on Alternative Energy in Developing Countries and Emerging Economies, Shah Alam, 2015

  2. Pratap T, Patra K, Dyakonov AA (2015) Modeling cutting force in micro-milling of Ti-6Al-4V titanium alloy. Procedia Eng 129:134–139

    Article  Google Scholar 

  3. Kappmeyer G, Hubig C, Hardy M, Witty M, Busch M (2012) Modern machining of advanced aerospace alloys —enabler for quality and performance. Procedia CIRP 1:28–43

    Article  Google Scholar 

  4. López de Lacalle LN, Pérez J, Llorente JI, Sánchez JA (2012) Advanced cutting conditions for the milling of aeronautical alloys. J Mater Process Technol 100:1–11

    Article  Google Scholar 

  5. Hasenfratz C, Abele E (2016) Analysis of the tool deflection in end milling of titanium, Proceedings of the ASME 2016 International Mechanical Engineering Congress ans Exposition, pp 1–13

  6. M’Saoubi R, Axinte D, Soo LS, Nobel C, Attia H, Kappmeyer G, Engin S, Sim WM (2015) High performance cutting of advanced aerospace alloys and composite materials. CIRP Ann Manuf Technol 64(2):557–580

    Article  Google Scholar 

  7. Ali MH, Khidhir BA, Ansari MNM, Mohamed B (2013) FEM to predict the effect of feed rate on surface roughness with cutting force during face milling of titanium alloy. HBRC J 9:263–269

    Article  Google Scholar 

  8. Diana AC, Sorin MC (2013) Prediction of Cutting Forces at 2D Titanium Machining. Prodecia Eng 69:81–89

    Google Scholar 

  9. Martellotti ME (1941) An analysis of the milling process. Trans ASME 63:677

    Google Scholar 

  10. Altintas Y (2012) Manufacturing automation: metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, Cambridge, New York

    Google Scholar 

  11. Sun S, Brandt M, Dargusch M (2009) Characteristics of cutting forces and chip formation in machining of titanium alloys. Int J Mach Tools Manuf 49:561–568

    Article  Google Scholar 

  12. Rashid R, Sun S, Wang G, Dargusch M (2012) An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti-6Cr-5Mo-5V-4Al beta titanium alloy. Int J Mach Tools Manuf 63:58–69

    Article  Google Scholar 

  13. Germain D, Fromentin G, Poulachon G, Bissey-Breton S (2013) From large-scale to micromachining: a review of force prediction models. J Manuf Processes 15:389–401

    Article  Google Scholar 

  14. Adetoro MB, Wen HP (2008) FEM evaluation of mechanistic cutting force coefficients using ALE Formation, Abaqus Users’ Conference, 2008

  15. Taylor FW (1907) On the art of cutting metal. American society of mechanical engineers, New York

    Google Scholar 

  16. Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. In: Zeitschrift des Vereins deutscher Ingenieure, pp 657–662

  17. Kronenberg M (1954) Grundzüge der Zerspanungslehre; 1. Band: einschneidige Zerspanung. Springer, Berling, Göttingen, Heidelberg

    Book  Google Scholar 

  18. Kalveram M (2005) Analyse und vorhersage der prozessdynamik und prozessstabilität beim Hochgeschwindigkeitsfräsen, PH.D. thesis, University Dortmund, Dortmund, 2005

  19. Faassen R (2003) Prediction of regenerative chatter by modeling and analysis of high speed milling, Eindhoven, 2003

  20. Sabberwal AJP (1962) Cutting forces in down milling. Int J Mach Tool Design Res 2:27–41

    Article  Google Scholar 

  21. Fu HJ, Devor RE, Kapoor SG (1984) A mechanistic model for the prediction of the force system in face milling operations. J Manuf Sci Eng 106(1):81–88

    Google Scholar 

  22. Spiewak S (1995) An improved model of the chip thickness in milling. Ann CIRP 44(1):39–42

    Article  Google Scholar 

  23. Wang H, Quin X, Ren C, Wang Q (2012) Prediction of cutting forces in helical milling process. Int J Adv Manuf Technol 58:849–859

    Article  Google Scholar 

  24. Rott O, Hömberg D, Mense C (2006) A Comparison of analytical cutting force models. Forschungsverbund, Berlin

  25. Kaymakci M, Kilic ZM, Altintas Y (2012) Unified cutting force model for turning, boring, drilling and milling operations. Int J Mach Tools Manuf 54–55:34–45

    Article  Google Scholar 

  26. Ehmann KF, Kapoor SG, Devor RE, Lazoglu I (1997) Machining process modeling: a review. Trans ASME J Manuf Sci Eng 119(4B):655–663

    Article  Google Scholar 

  27. Lv D, Xu J, Ding W, Fu Y, Yang C, Su H (2016) Tool wear in milling Ti40 burn-resistant titanium alloy using pneumatic mist jet impinging cooling. J Mater Process Technol 229:641–650

    Article  Google Scholar 

  28. Klocke F, Settineri L, Lung D, Priarone PC, Arft M (2013) High performance cutting of gamma titanium aluminides: Influence of lubricoolant strategy on tool wear and surface integrity, Aachen, 2013

  29. Nouari M., Iordanoff I (2007) Effect of the third-body particles on the tool–chip contact and tool-wear behaviour during dry cutting of aeronautical titanium alloys. Tribol Int 40:1351–1359

    Article  Google Scholar 

  30. Oraby SE, Hayhurst DR (1991) Development of models for tool wear force relationships in metal cutting. Int J Mech Sci 33(2):125–138

    Article  Google Scholar 

  31. Teitenberg TM, Bayoumi AE, Yucesan G (1992) Tool wear modeling through an analytic mechanistic model of milling processes. Wear 154(2):287–304

    Article  Google Scholar 

  32. Lin SC, Yang RJ (1995) Force-based model for tool wear monitoring in face milling. Int J Mach Tools Manuf 35(9):1201–1211

    Article  Google Scholar 

  33. Lin SC, Lin RJ (1996) Tool wear monitoring in face milling using force signals. Wear 198:136–142

    Article  Google Scholar 

  34. Cui Y, Fussell BK, Jerard RB, Esterling DM (2009) Tool wear monitoring for milling by tracking cutting force model coefficients. Trans (NAMRI/SME) 37:S613–620

    Google Scholar 

  35. Kolar P, Sulitka M, Fojtu P, Falta J, Sindler J (2016) Cutting force modeling with a combined influence of tool wear and tool geometry. Manuf Technol 16(3):524–531

    Google Scholar 

Download references

Acknowledgements

This research and development project is funded by the German Federal Ministry of Education and Research (BMBF) within the 02PN2205 and managed by the Project Management Agency Karlsruhe (PTKA). The authors are responsible for the contents of this publication. The authors are also grateful to the anonymous reviewers for their constructive criticisms which served to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Hasenfratz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abele, E., Hasenfratz, C. & Bücker, M. Modeling of process forces with respect to technology parameters and tool wear in milling Ti6Al4V. Prod. Eng. Res. Devel. 11, 285–294 (2017). https://doi.org/10.1007/s11740-017-0739-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0739-2

Keywords

Navigation