Skip to main content
Log in

Deburring of cross-drilled holes with ball-end cutters—modeling the tool path

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Machining of cross-drilled holes generates burrs on the entrance and exit. Deburring of these intersecting holes is challenging due to the limited accessibility. This paper presents a model that creates a tool path suitable for precision deburring of intersecting holes with a ball-end cutter. The presented model is developed with the help of Computer-Aided-Engineering. The tool generates a three-axis travel path related to the intersection geometry of the main and cross hole. The burr is removed and a constant chamfer is machined. The intersection curve is even machined through the main or cross bore. The presented model is verified by means of experiments with three different intersection samples using the material AlSi7Mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Da Silva LC, Mota PR, Da Silva MB, Ezugwu EO, Machado AR (2015) Study of burr height in face milling of PH 13-8 Mo stainless steel—transition from primary to secondary burr and benefits of deburring between passes. CIRP J Manufact Sci Technol 10:61–67

    Article  Google Scholar 

  2. Gillespie LK (1976) Burrs Produced by End Milling, Bendix, Kansas City Division Report BDX-613–1503

  3. Beier H-M, Nothnagel R (2015) Praxisbuch Entgrattechnik—Wegweiser zur Gratminimierung und Gratbeseitigung für Konstruktion und Fertigung, 2nd edn. Hanser, München

    Book  Google Scholar 

  4. Gillespie LK (2001) Your burr technology efforts changed the World. Deburring Technology International, Kansas City

    Google Scholar 

  5. Pischan M (2013) Deburrring of cross holes in titanium using industrial robots, WGP Congress. Adv Mater Res 769:147–154

    Article  Google Scholar 

  6. Beier H-M: Hochgeschwindigkeitsentgraten, wt Werkstattstechnik online, 95 H.10: 821–8272005

  7. Lee UL, Ko SL (2008) Development of deburring tool for burrs at intersecting holes. J Mater Process Technol 201:454–459

    Article  Google Scholar 

  8. Güth S, Abele E (2013) Automatisiertes Entgraten von Kreuzbohrungen—Werkzeugbenchmark, Werkstatt—Betrieb, WB10/2013, pp 74–78

  9. Ton TP, Park HY, Ko SL (2011) Experimental analysis of deburring process on inclined exit surfaces by New Deburring Tool. CIRP Ann Manuf Technol 60:129–132

    Article  Google Scholar 

  10. Kim KH, Park NJ (2005) A New Deburring Tool for Intersecting Holes. In: Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol 219, pp 865–870

  11. Cho C-H, Kim K-H (2010) Product development with TRIZ: design evolution of deurring tools for intersecting holes. J Mech Sci Technol 24:169–173

    Article  Google Scholar 

  12. Cho C-H, Chae S-W, Kim K-H (2014) Search for a new design of deburring tools for intersecting holes with TRIZ. Int J Manuf Technol 70:2221–2231

    Article  Google Scholar 

  13. Schützer K, Abele E, Güth S (2015) Simulation-based deburring tool and process development. CIRP Ann Manuf Technol 64:357–360

    Article  Google Scholar 

  14. Güth S (2016) Simulationsbasierte Entgratwerkzeug-entwicklung für Kreuzbohrungen, Schriftenreihe des PTW: “Innovation Fertigungstechnik”. Shaker Verlag, TU Darmstadt, Aachen

    Google Scholar 

  15. Kim YJ, Ko SL, Kim JH, Kim BK (2006) Development of intelligent system to minimize burr formation in face milling. Int J Manuf Technol 29:879–884

    Article  Google Scholar 

  16. Chu C-H, Chen J-T (2005) Geometric approaches to enhancing edge quality in planar milling. Int J Prod Res 43(4):773–791

    Article  Google Scholar 

  17. Song H-C, Song J-B (2013) Precision robotic deburring based on force control for arbitrarily shaped workpiece using CAD model matching. Int J Precision Manuf 15(1): 85–91

    Article  MathSciNet  Google Scholar 

  18. Posada JRD, Kumar S, Kuss A, Schneider U, Drust M, Dietz T, Verl A (2016) Automatic Programming and Control for Robotic Deburring, 47th International Symposium on Robotics. Munich

  19. Avila MC (2004) Deburring of Cross-drilled hole intersections by mechanized cutting, Laboratory for Manufacturing Automation. Annual Reports, pp 10–20

  20. Pischan M (2014) Entgraten von Kreuzbohrungen mit Industrierobotern, Schriftenreihe des PTW: “Innovation Fertigungstechnik”. Shaker Verlag, TU Darmstadt, Aachen

    Google Scholar 

  21. Sato T, Sato Y, Maekawa T (2016) Tool path generation for Chamfering Drill holes of a pipe with constant width. Comput Aided Des 78:26–35

    Article  Google Scholar 

  22. Chern G-L, Dornfeld DA (1996) Burr/breakout model development and experimental verification. J Eng Technol 118:201–206

    Google Scholar 

  23. Hashimura M, Ueda K, Dornfeld DA (1995) Analysis of three-dimensional Burr formation in oblique cutting. Ann CIRP 44:27–30

    Article  Google Scholar 

  24. Kühnel W (2013) Differentialgeometrie Kurven—Flächen—Mannigfaltigkeiten, Edition 6. Springer Spektrum, Wiesbaden

    Book  MATH  Google Scholar 

  25. ISO 13715:2000 (2000) Technical drawings – Edges of undefined shape—Vocabulary and indications, Technical Committee: ISO/ TC 10/SC 6, Mechanical engineering documentation

  26. Wojciechowski S, Chwalczuk T, Twardowski P, Krolczyk GM (2015) Modeling of cutter displacements during ball end milling of inclined surfaces. Archieves Civil Mech Eng 15:798–805

    Article  Google Scholar 

Download references

Acknowledgements

This research and development project is funded by the German Research Foundation (DFG AB 133/94-1). The authors are responsible for the content of this publication. The authors are also grateful to the anonymous reviewers for their constructive criticism which served to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Meinhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abele, E., Schützer, K., Güth, S. et al. Deburring of cross-drilled holes with ball-end cutters—modeling the tool path. Prod. Eng. Res. Devel. 12, 25–33 (2018). https://doi.org/10.1007/s11740-017-0781-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0781-0

Keywords

Navigation