Skip to main content
Log in

Influence of tribological conditions on cold forging of gears

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Gears are integral and vital machine elements in the field of drive and transmission technology. With regard to economic and ecological aspects, cold forging represents a promising approach compared to conventional cutting processes for producing highly-loadable gears. A possible extrusion process for manufacturing helical gears is the so-called “Samanta”-process. In comparison to conventional extrusion processes, an additional ejector system is avoidable. Thus, in particular for helical gears, a negative impact on the gear quality by the ejector operation is prevented. Furthermore, the process chain during the component production cycle is shortened which leads to a more efficient production. The achievable gear accuracy as well as insufficient tool life are major challenges while establishing the “Samanta”-process in industry. To enable an industrial application, basic process understanding as well as knowledge about the influences on the process results is required. For influencing component and process properties within cold forging, approaches from the tribological system can be generally used. The aim of this study is to analyze the influence of the friction conditions on selected component and process properties within cold forging of gears by the “Samanta”-process. For adjusting the occurring friction, various lubrication systems were applied, which have been qualified using a double cup extrusion test (DCE-test). The results reveal that the lubrication system determines the friction conditions during forming. Within cold forging of helical gears by the “Samanta”-process, the friction influences the resulting strain hardening of the components and the required maximum forming force as well as the energy amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dudley DW (2013) Dudley’s handbook of practical gear design and manufacture. Springer, Berlin

    Google Scholar 

  2. Smith DJ (2003) Gear noise and vibration. Marcel Dekker Inc, New York

    Google Scholar 

  3. Gunasekaran A (1994) Improving productivity and quality in manufacturing organizations. Int J Prod Econ 36:169–183

    Article  Google Scholar 

  4. Myeong-Sik J, Sang-Kon L (2013) Green manufacturing process for helical pinion gear using cold extrusion process. Int J Precis Eng Manuf 14:1007–1011

    Article  Google Scholar 

  5. Doege E, Nägele H (1994) FE simulation of the precision forging process of bevel gears. Ann CIRP 43:241–244

    Article  Google Scholar 

  6. Kaspar J (2017) Sustainable lightweight design—relevance and impact on the product development and lifecycle process. Procedia Manuf 8:409–416

    Article  Google Scholar 

  7. Samanta SK (1976) Helical gear: a novel method of manufacturing it. In: Proceedings of NAMRC IV, Columbus: Batelle Columbus Laboratories, pp 199–205

  8. Schmieder F (1993) Beitrag zur Fertigung von schrägverzahnten Stirnrädern durch Querfließpressen. Dissertation, Universität Stuttgart

  9. Odening D, Meyer M, Klassen A, Bouguecha A, Behrens B-A (2014) Präzisionsschmieden. In: Bach F-W, Kerber K (Hrsg) Prozesskette Präzisionsschmieden. Springer, Berlin

    Chapter  Google Scholar 

  10. Lennartz J (1995) Kaltfließpressen von gerad- und schrägverzahnten Getriebewellen. Dissertation, RWTH Aachen

  11. Koll W (1990) Kaltfließpressen von Bauteilen mit Verzahnungen. Dissertation, RWTH Aachen

  12. DIN-Norm (1978) Toleranzen für Stirnradverzahnungen—Grundlagen. Deutsches Institut für Normen (DIN), DIN 3961. Beuth-Verlag, Berlin

  13. Kiener C, Andreas K, Merklein M (2016) Basic numerical analysis of a “Samanta” based forward extrusion process. Adv Mater Res 1140:27–34

    Article  Google Scholar 

  14. ICFG-Document (2013) Tool life and tool quality in cold forging, part five: surface finishing of cold forging tools. International Cold Forging Group (ICFG), Meisenbach, Bamberg (Doc. 23/13)

  15. DIN 50320 (1979) Verschleiß; Begriffe, Systemanalyse von Verschleißvorgängen, Gliederung des Verschleißgebietes. Beuth, Düsseldorf

  16. Schrader T, Shirgaokar M, Altan T (2007) A critical evaluation of the double cup extrusion test for selection of cold forging lubricants. J Mater Process Technol 189(3):1–3, 36–44

    Google Scholar 

  17. Buschhausen A, Weinmann K, Lee JY, Altan T (1992) Evaluation of lubrication and friction in cold forging using a double backward-extrusion process. J Mater Process Technol 33(1–2):95–108

    Article  Google Scholar 

  18. Geiger R (1976) Der Stofffluss beim kombinierten Napffließpressen. In: Lange K (Hrsg) Berichte aus dem Institut für Umformtechnik, Universität Stuttgart, Bd. 36. Giradet, Essen

    Google Scholar 

  19. Tekkaya AE (2005) A guide for validation of FE-simulations in bulk metal forming. Ar J Sci Eng 30:113–136

    Google Scholar 

  20. VDI-Richtlinie (1984) Vorgespannte Preßwerkzeuge für das Kaltmassivumformen. Verein Deutscher Ingenieure (VDI), VDI 3176. VDI-Verlag, Düsseldorf

    Google Scholar 

  21. ICFG-Document (1987) General recommendations for design, manufacture and operational aspects of cold extrusion tools for steel. International Cold Forging Group (ICFG), Meisenbach, Bamberg (Doc. 6/82)

    Google Scholar 

  22. ICFG-Document (1991) Lubrication aspects in cold forging of carbon steels and low alloy steels. International Cold Forging Group (ICFG), Meisenbach, Bamberg (Doc. 8/91)

    Google Scholar 

  23. Bay N (2010) Green lubricants for metal forming. Tribology of manufacturing processes. In: Proceedings of the International Conference on tribology in manufacturing processes 1:5–33

  24. Groche P, Müller C, Jahn A (2014) Effects of the tool lubrication in cold forging. Tribol Lett 53:599–605

    Article  Google Scholar 

  25. Klocke F, Gorgels C, Kauffmann P, Herzhoff S, Schalster R, Stuckenberg A, Vasiliou V (2008) Trends in der Zahnradfertigung. In: Neugebauer R (Hrsg): Tagungsband zum 5. Chemnitzer Produktionstechnischen Kolloquium CPK: Zerspanung in Grenzbereichen, Berichte aus dem IWU. Band, Vol. 46, pp 87–113

  26. Schöck J, Kammerer M (1999) Verzahnungsherstellung durch Kaltfließpressen. Umformtechnik 4:36–42

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the research association “Green Factory Bavaria” for their financial support of the research project “Resource-efficient manufacturing of finished gears by cold forging”. Furthermore, the authors acknowledge the participating industrial partners within this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Kiener.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiener, C., Neher, R. & Merklein, M. Influence of tribological conditions on cold forging of gears. Prod. Eng. Res. Devel. 12, 367–375 (2018). https://doi.org/10.1007/s11740-017-0785-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0785-9

Keywords

Navigation