Skip to main content
Log in

A discrete level set approach to image segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Models and algorithms in image processing are usually defined in the continuum and then applied to discrete data, that is the signal samples over a lattice. In particular, the set up in the continuum of the segmentation problem allows a fine formulation basically through either a variational approach or a moving interfaces approach. In any case, the image segmentation is obtained as the steady-state solution of a nonlinear PDE. Nevertheless the application to real data requires discretization schemes where some of the basic image geometric features have a loose meaning. In this paper, a discrete version of the level set formulation of a modified Mumford and Shah energy functional is investigated, and the optimal image segmentation is directly obtained through a nonlinear finite difference equation. The typical characteristics of a segmentation, such as its component domains area and its boundary length, are all defined in the discrete context thus obtaining a more realistic description of the available data. The existence and uniqueness of the optimal solution is proved in the class of piece wise constant functions, but with no restrictions on the nature of the segmentation boundary multiple points. The proposed algorithm compared to a standard segmentation procedure in the continuum generally provides a more accurate segmentation, with a much lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kass M., Witkin A. and Terzopoulos D. (1988). Snakes: active contour models. Int. J. Comput. Vis. 1: 321–332

    Article  Google Scholar 

  2. Mumford D. and Shah J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42(4): 577–685

    Article  MATH  MathSciNet  Google Scholar 

  3. Tsai A., Yezzi A. and Willsky A.S. (2001). Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation and magnification. IEEE Trans. Image Proces. 10(8): 1169–1184

    Article  MATH  Google Scholar 

  4. Suri J.S., Liu K., Singh S., Laxminarayan S.N., Zeng X. and Reden L. (2002). Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans. Inform. Tech. Biomed. 6(1): 8–28

    Article  Google Scholar 

  5. Mansouri A.R. and Conrad J. (2003). Multiple motion segmentation with level sets. IEEE Trans. Image Proces. 12(2): 201–220

    Article  Google Scholar 

  6. Kruse, F.A.: Multiresolution segmentation for improved hyperspectral mapping. In: Proc. SPIE Symposium on Defense & Security, Orlando, FL (2005)

  7. Yang, T., Li, S.Z., Pan, Q., Li, J.: Real time and accurate segmentation of moving objects in dynamic scene. In: Proc. of the ACM 2-nd Intern. Workshop on Video Surveillance & Sensor networks, pp. 136–143, New York (2004)

  8. Imasogie B.I. and Wendt U. (2004). Characterization of graphite particle shape in spheroidal graphite iron using a computer based image analyzer. J. Minerals Materi. Characterization Eng. 3(1): 1–12

    Google Scholar 

  9. Proc. of the Seventh International Conference on Document Analysis and Recognition—ICDAR2003, http://www.cse.salford.ac.uk/prima/ICDAR2003/

  10. Niethammer M., Tannenbaum A. and Angenent S. (2006). Dynamic active contours for visual tracking. IEEE Trans. Autom. Control 51(4): 562–579

    Article  MathSciNet  Google Scholar 

  11. Kichenassamy S., Kumar A., Olver P., Tannenbaum A. and Yezzy A. (1996). Conformal curvature flows: from phase transition to active vision. Arch. Rational Mech. Anal. 134(3): 275–301

    Article  MATH  MathSciNet  Google Scholar 

  12. Caselles V. and Coll B. (1996). Snakes in movement. SIAM J. Numer. Anal. 33(6): 2445–2456

    Article  MATH  MathSciNet  Google Scholar 

  13. Caselles V., Kimmel R. and Sapiro. G. (1997). Geodesic Active Contours. Int. J. Comput. Vis. 22(1): 61–79

    Article  MATH  Google Scholar 

  14. Osher S. and Sethian J.A. (1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79: 12–49

    Article  MATH  MathSciNet  Google Scholar 

  15. Caselles V., Cattè F., Coll B. and Dibos F. (1993). A geometric model for active contours in image processing. Numer. Math. 66: 1–31

    Article  MATH  MathSciNet  Google Scholar 

  16. Chan T. and Vese L. (2001). Active contours without edge. IEEE Trans. Image Proces. 10(2): 266–277

    Article  MATH  Google Scholar 

  17. Chan T. and Vese L. (2002). A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model. Int. J. Comput. Vis. 50(3): 271–293

    Article  MATH  Google Scholar 

  18. Heiler M. and Schnorr C. (2005). Natural image statistics for natural image segmentation. Int. J. Comput Vis. 63(1): 5–19

    Article  Google Scholar 

  19. Mansouri A.R., Mitiche A. and Vasquez C. (2006). Multiregion competition: a level set extension of region competition to multiple region image partitioning. Comput. Vis Image Understanding 101: 137–150

    Article  Google Scholar 

  20. Cremers D., Sochen N. and Schnorr C. (2006). A multiphase dynamic labeling model for variational recognition-driven image segmentation. Int. J. Comput. Vis. 66(1): 67–81

    Article  Google Scholar 

  21. Unal G., Yezzi A. and Krim H. (2005). Information-theoretic active polygons for unsupervised texture segmentation. Int. J. Comput. Vis. 62(3): 199–220

    Article  Google Scholar 

  22. Aubert G. and Vese L. (1997). A variational method in image recovery. SIAM J. Numer. Anal. 34(5): 1948–1979

    Article  MATH  MathSciNet  Google Scholar 

  23. Shi, Y., Karl, W.C.: A fast level set method without solving PDEs. In: Proc. 2005 IEEE Int’l Conf. on Acoustics, Speech, and Signal Processing, vol. II, pp. 97–100, Philadelphia (2005)

  24. Boykov Y. and Kolmogorov V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. PAMI, 26(9): 1124–1137

    Google Scholar 

  25. Funka-Lea, G., Boykov, Y., Florin, C., Jolly, M.-P., Moreau-Gobard, R., Ramaraj, R., Rinck, D.: Automatic heart isolation for CT coronary visualization using graph-cuts. In: 3-rd International Symposium on Biomedical Imaging: from macro to nano, Arlington-Virginia, pp. 614–617

  26. Gel’fand I.M. and Shilov G.E. (1964). Generalized Functions-vol 1-Properties and Operations. Academic, New York

    Google Scholar 

  27. Jeon M., Alexander M., Pedrycz W. and Pizzi N. (2005). Unsupervised hierarchical image segmentation with level set and additive operator splitting. Pattern Recogn. Lett. 26: 1461–1469

    Article  Google Scholar 

  28. Rudin L.I., Osher S. and Fatemi E. (1992). Nonlinear total variation based noise removal algorithms. Physica D 60: 259–268

    Article  MATH  Google Scholar 

  29. Holliday J.D., Hu C.-Y. and Willett P. (2002). Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2-D fragment bit-strings. Combin. Chem. High Throughput Screening 5: 155–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto De Santis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Santis, A., Iacoviello, D. A discrete level set approach to image segmentation. SIViP 1, 303–320 (2007). https://doi.org/10.1007/s11760-007-0032-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0032-5

Keywords

Navigation