Skip to main content
Log in

A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper introduces a new multiscale speckle reduction method based on the extraction of wavelet interscale dependencies to visually enhance the medical ultrasound images and improve clinical diagnosis. The logarithm of the image is first transformed to the oriented dual-tree complex wavelet domain. It is then shown that the adjacent subband coefficients of the log-transformed ultrasound image can be successfully modeled using the general form of bivariate isotropic stable distributions, while the speckle coefficients can be approximated using a zero-mean bivariate Gaussian model. Using these statistical models, we design a new discrete bivariate Bayesian estimator based on minimizing the mean square error (MSE). To assess the performance of the proposed method, four image quality metrics, namely signal-to-noise ratio, MSE, coefficient of correlation, and edge preservation index, were computed on 80 medical ultrasound images. Moreover, a visual evaluation was carried out by two medical experts. The numerical results indicated that the new method outperforms the standard spatial despeckling filters, homomorphic Wiener filter, and new multiscale speckle reduction methods based on generalized Gaussian and symmetric alpha-stable priors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott J.G., Thurstone F.L.: Acoustic speckle: theory and experimental analysis. Ultrason. Imaging 1, 303–324 (1979)

    Article  Google Scholar 

  2. Wagner R.F., Smith S.W., Sandrik J.M., Lopez H.: Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrason. 30, 156–163 (1983)

    Google Scholar 

  3. Burckhardt C.B.: Speckle in ultrasound B-mode scans. IEEE Trans. Sonics Ultrason. SU-25, 1–6 (1978)

    Google Scholar 

  4. Lee J.S.: Digital Image enhancement and noise filtering by using local statistics. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2, 165–168 (1980)

    Article  Google Scholar 

  5. Frost V.S., Stiles J.A., Shanmugan K.S., Holtzman J.C.: A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4, 157–165 (1982)

    Article  Google Scholar 

  6. Kuan D.T., Sawchuk A.A., Strand T.C., Chavel P.: Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Process. ASSP-35, 373–383 (1987)

    Article  Google Scholar 

  7. Lopez A., Touzi R., Nezry E.: Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 28, 992–1000 (1990)

    Article  Google Scholar 

  8. Yu Y., Acton S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11, 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  9. Mallat S.: A Wavelet Tour of Signals Processing. Academic Press, London (1998)

    Google Scholar 

  10. Donoho D.L.: Denoising by soft-thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Simoncelli E.P.: Bayesian denoising of visual images in the wavelet domain. In: Muller, P., Vidakovic, B. (eds) Bayesian Inference in Wavelet Based Models chap. 18, pp. 291–308. Springer, New York (1999)

    Google Scholar 

  12. Achim A., Bezerianos A., Tsakalides P.: Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20, 772–783 (2001)

    Article  Google Scholar 

  13. Sendur L., Selesnick I.W.: Biavriate shrinkage functions for wavelet-based denoising exploiting interscale dependency. IEEE Trans. Signal Process. 50, 2744–2756 (2002)

    Article  Google Scholar 

  14. Cho D., Bui T.D.: Multivariate statistical modeling for image denoising using wavelet transforms. Signal Process. Image Commun. 20, 77–89 (2003)

    Article  Google Scholar 

  15. Achim A., Kuruoglu E.: Image denoising using bivariate alpha-stable distributions in the complex wavelet domain. IEEE Signal Process. Lett. 12, 17–20 (2005)

    Article  Google Scholar 

  16. Forouzanfar, M., Moghaddam, H.A., Dehghani, M.: Speckle reduction in medical ultrasound images using a new multiscale bivariate Bayesian MMSE-based method. In: Proceedings of IEEE 15th signal processing and communication applications conference, Eskisehir, Turkey, June 2007

  17. Gupta S., Chauhan R.C., Sexana S.C.: Wavelet-based statistical approach for speckle reduction in medical ultrasound images. Med. Biol. Eng. Comput. 42, 189–192 (2004)

    Article  Google Scholar 

  18. Zhang L., Bao P., Wu X.: Multiscale LMMSE-based image denoising with optimal wavelet selection. IEEE Trans. Circuits Syst. Video Technol. 15, 469–481 (2005)

    Article  Google Scholar 

  19. Pizurica A., Philips W., Lemahieu I., Acheroy M.: A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans. Med. Imaging 22, 323–331 (2003)

    Article  Google Scholar 

  20. Goodman J.W.: Some fundamental properties of speckle. J. Opt. Soc. Am. 66, 1145–1150 (1976)

    Article  Google Scholar 

  21. Ulaby F.T., Haddock T.F., Austin R.T.: Fluctuation statistics of millimeter wave scattering from distributed targets. IEEE Trans. Geosci. Remote Sens. 26, 268–281 (1988)

    Article  Google Scholar 

  22. Jain A.K.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  23. Xie H., Pierce L.E., Ulaby F.T.: Statistical properties of logarithmically transformed speckle. IEEE Trans. Geosci. Remote Sens. 40, 721–727 (2002)

    Article  Google Scholar 

  24. Arsenault H.H., April G.: Properties of speckle integrated with a finite aperture and logarithmically transformed. J. Opt. Soc. Am. 66, 1160–1163 (1976)

    Article  Google Scholar 

  25. Selesnic, I.W., Baraniuk, R.G., Kingsbury, N.G.: The dual-tree complex wavelet transform. IEEE Signal Process. Mag. 123–151 (2005)

  26. Liu, J., Moulin, P.: Analysis of interscale and intrascale dependencies between image wavelet coefficients. In: Proceedings of IEEE International Conference on Image Process, vol. 1, pp. 669–672

  27. Chang S.G., Yu B., Vetterli M.: Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. Image Process. 9, 1522–1531 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  28. Nikias C.L., Shao M.: Signal Processing with Alpha-Stable Distributions and Applications. Chapman and Hall, London (1994)

    Google Scholar 

  29. Coban, M.Z., Mersereau, R.M.: Adaptive subband viedo coding using bivariate generalized Gaussian distribution model. In: Proceedings of IEEE International Conference on Acoustic, Speech, and Signal Processing, pp. 1990–1993 (1996)

  30. Nolan J.P., Panorska A.K., McCulloch J.H.: Estimation of stable spectral measures. Math. Comput. Model. 34, 1113–1122 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Pivato M., Seco L.: Estimating the spectral measure of a multivariate stable distribution via spherical harmonic analysis. J. Multivar. Anal. 87, 219–240 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  32. Rachev S.T., Xin H.: Test for association of random variables in the domain of attraction of multivariate stable law. Probab. Math. Stat. 14, 125–141 (1993)

    MATH  MathSciNet  Google Scholar 

  33. Nolan, J.P.: Parameter estimation and data analysis for stable distributions. In: Proceedings of IEEE thirty-first asilomar conference on signals, systems, and computers, vol 1, pp 443–447 (1997)

  34. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical recipes in C: the art of scientific computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  35. Kullback S.: The Kullback–Leibler distance. Am. Stat. 41, 340–341 (1987)

    Google Scholar 

  36. Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  37. Theodoridis S., Koutroumbas K.: Pattern Recognition, 2nd edn. Academic Press, New York (2003)

    Google Scholar 

  38. Achim A., Tsakalides P., Bezerianos A.: SAR image denoising via Bayesian wavelet shrinkage based on Heavy-Tailed modeling. IEEE Trans. Geosci. Remote Sens. 41, 1773–1784 (2003)

    Article  Google Scholar 

  39. Koutrouvelis I.A.: Regression-type estimation of the parameters of stable law. J. Am. Stat. Assoc. 75, 918–928 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  40. Byczkowski T., Nolan J.P., Rajput B.: Approximation of multidimensional stable densities. J. Multivar. Anal. 46, 13–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  41. Yoe Y., Croitoru M.M., Bidani A., Zwischenberger J.B., Clark J.W.: Nonlinear multiscale wavelet diffiusion for speckle suppression and edge enhancement in ultrasound images. IEEE Trans. Med. Imaging 25, 297–311 (2006)

    Article  Google Scholar 

  42. Sattar F., Floreby L., Salomonsson G., Lovstrom B.: Image enhancement based on a nonlinear multiscale method. IEEE Trans. Image Process. 6, 888–895 (1997)

    Article  Google Scholar 

  43. Loupas T., McDicken W.N., Allan P.L.: An adaptive weighted median filter for speckle suppression in medical ultrasonic images. IEEE Trans. Circuits Syst. 36, 129–135 (1989)

    Article  Google Scholar 

  44. Karaman M., Kutay M.A., Bozdagi G.: An adaptive speckle suppression filter for medical ultrasonic imaging. IEEE Trans. Med. Imaging 14, 283–292 (1995)

    Article  Google Scholar 

  45. Huang Q., Lu M., Zheng Y., Chi Z.: Speckle suppression and contrast enhancement in reconstruction of freehand 3D ultrasound images using an adaptive distance-weighted method. Appl. Acoust. 70, 21–30 (2009)

    Article  Google Scholar 

  46. Adam D., Nissan S.B., Friedman Z., Behar V.: The combined effect of spatial compounding and nonlinear filtering on the speckle reduction in ultrasound images. Ultrasonics 44, 166–168 (2006)

    Article  Google Scholar 

  47. Boubchir L., Fadili J.M.: A closed-form nonparametric Bayesian estimator in the wavelet domain of images using an approximate α-stable prior. Pattern Recogn. Lett. 27, 1370–1382 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Abrishami Moghaddam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forouzanfar, M., Moghaddam, H.A. & Gity, M. A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images. SIViP 4, 359–375 (2010). https://doi.org/10.1007/s11760-009-0126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-009-0126-3

Keywords

Navigation