Skip to main content
Log in

Optimal filtering of multivariate noisy AR processes

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Autoregressive (AR) models play a role of paramount importance in the description of scalar and multivariate time series and find many applications in prediction and filtering. The main limit of AR models is associated with their elementary description of the misfit between observations and model (equation error considered as a white noise). A more realistic family of autoregressive models is given by “AR+noise” ones where besides a white equation error also additive white noise on the observations is considered. Noisy AR models have given very good results in practical applications and lead to more realistic descriptions of the underlying processes; for these reasons, they are intrinsically more suitable than AR models for filtering applications. The use of AR+noise models in filtering requires the construction of a state-space realization and Kalman filtering. This article proposes an efficient innovation-based filtering approach whose computational burden is lower than that of Kalman filtering. The proposed algorithm relies directly on polynomial input–output models and on Cholesky factorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kay S.M.: Modern Spectral Estimation. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  2. Haykin S.: Adaptive Filter Theory. Prentice-Hall, Englewood Cliffs (1991)

    MATH  Google Scholar 

  3. Haykin, S., Steinhardt, A. (eds): Adaptive Radar Detection and Estimation. Wiley, Amsterdam (1992)

    Google Scholar 

  4. Takalo R., Hytti H., Ihalainen H.: Tutorial on univariate autoregressive analysis. J. Clin. Monit. Comput. 19, 401–410 (2005)

    Article  Google Scholar 

  5. Hytti H., Takalo R., Ihalainen H.: Tutorial on multivariate autoregressive modelling. J. Clin. Monit. Comput. 20, 101–108 (2006)

    Article  Google Scholar 

  6. Kay S.M.: Noise compensation for autoregressive spectral estimates. in: IEEE Trans. Acoust. Speech Signal Process. 28, 292–303 (1980)

    Article  MATH  Google Scholar 

  7. Sen Lee T.: Large sample identification and spectral estimation of noisy multivariate autoregressive processes. in: IEEE Trans. Acoust. Speech Signal Process. 31, 76–82 (1983)

    Article  Google Scholar 

  8. Davila C.E.: A subspace approach to estimation of autoregressive parameters from noisy measurements. in: IEEE Trans. Signal Process. 46, 531–534 (1998)

    Article  Google Scholar 

  9. Zheng W.X.: A least-squares based method for autoregressive signals in the presence of noise. in: IEEE Trans. Circuits Syst. II 46, 81–85 (1999)

    Article  MATH  Google Scholar 

  10. Grivel E., Gabrea M., Najim M.: Speech enhancement as a realisation issue. Signal Process. 82, 1963–1978 (2002)

    Article  MATH  Google Scholar 

  11. Hasan Md.K., Hossain Md.J., Haque Md.A.: Parameter estimation of multichannel autoregressive processes in noise. Signal Process. 83, 603–610 (2003)

    Article  MATH  Google Scholar 

  12. Zheng W.X.: Fast identification of autoregressive signals from noisy observations. in: IEEE Trans. Circuits Syst. II 52, 43–48 (2005)

    Article  Google Scholar 

  13. Bobillet W., Diversi R., Grivel E., Guidorzi R., Najim M., Soverini U.: Speech enhancement combining optimal smoothing and errors-in-variables identification of noisy AR processes. in: IEEE Trans. Signal Process. 55, 5564–5578 (2007)

    Article  MathSciNet  Google Scholar 

  14. Diversi R., Guidorzi R., Soverini U.: Identification of autoregressive models in the presence of additive noise. Int. J. Adapt. Control Signal Process. 22, 465–481 (2008)

    Article  MathSciNet  Google Scholar 

  15. Oppenheim A.V., Weinstein E., Zangi K.C., Feder M., Gauger D.: Single-sensor active noise cancellation. in: IEEE Trans. Speech Audio Process. 2, 285–290 (1994)

    Article  Google Scholar 

  16. Gannot S., Burchtein D., Weinstein E.: Iterative and sequential Kalman filter-based speech enhancement algorithms. in: IEEE Trans. Speech Audio Process. 6, 373–385 (1998)

    Article  Google Scholar 

  17. Gevers M.R.: ARMA models, their Kronecker indices and their McMillan degree. Int. J. Control 43, 1745–1761 (1986)

    Article  MATH  Google Scholar 

  18. Guidorzi R.P.: On the use of minimal parametrizations in multivariable ARMAX identification. Eur. J. Control 4, 85–92 (1998)

    Article  MATH  Google Scholar 

  19. Anderson B.D.O., Moore J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

  20. Rissanen J., Barbosa L.: Properties of infinite covariance matrices and stability of optimum predictors. Inf. Sci. 1, 221–236 (1969)

    Article  MathSciNet  Google Scholar 

  21. Caines P.E.: Linear Stochastic Systems. Wiley, New York (1988)

    MATH  Google Scholar 

  22. Golub G.H., Van Loan C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1983)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Diversi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diversi, R., Guidorzi, R. Optimal filtering of multivariate noisy AR processes. SIViP 7, 873–878 (2013). https://doi.org/10.1007/s11760-011-0276-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0276-y

Keywords

Navigation