Skip to main content
Log in

Analysis of Dirichlet, Generalized Hamming and Triangular window functions in the linear canonical transform domain

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Linear canonical transform is a four-parameter class of integral transform that plays an important role in many fields of optics and signal processing. Well-known transforms such as the Fourier transform, the fractional Fourier transform, and the Fresnel transform can be seen as the special cases of the linear canonical transform. This paper presents a new mathematical model for obtaining the linear canonical transforms of Dirichlet, Generalized “Hamming”, and Triangular window functions. The different window function parameters are also obtained from the simulations. By changing the value of four parameters and then changing the adjustable parameter, the main-lobe width, −3 dB bandwidth, −6 dB bandwidth and correspondingly, the minimum stop-band attenuation of the resulting window functions can be controlled. It has been shown that by using linear canonical transform, we are able to obtain all window parameters successfully as compared to fractional Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alieva T., Bastiaans M.J.: Powers of transfer matrices determined by means of eigenfunctions. J. Opt. Soc. Am. A 16(10), 2413–2418 (1999)

    Article  MathSciNet  Google Scholar 

  2. Moshinsky M., Quesne C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12(8), 1772–1783 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Nazarathy M., Shamir J.: First-order optics—a canonical operator representation: lossless systems. J. Opt. Soc. Am. 72(3), 356–364 (1982)

    Article  MathSciNet  Google Scholar 

  4. Pei S.C., Ding J.J.: Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans. Signal Process. 49(8), 1638–1655 (2001)

    Article  MathSciNet  Google Scholar 

  5. Pei S.C., Ding J.J.: Eigenfunctions of linear canonical transform. IEEE Trans. Acoust. Speech. Signal Process. 50(1), 11–26 (2002)

    Article  MathSciNet  Google Scholar 

  6. Hennelly B.M., Sheridan J.T.: Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms. J. Opt. Soc. Am. A 22(5), 917–927 (2005)

    Article  MathSciNet  Google Scholar 

  7. Stern A.: Sampling of linear canonical transformed signals. Signal Process. 86(7), 1421–1425 (2006)

    Article  MATH  Google Scholar 

  8. Tao R., Qi L., Wang Y.: Theory and Applications of the Fractional Fourier Transform. Tsinghua University Press, Beijing (2004)

    Google Scholar 

  9. Ozaktas H.M., Kutay M.A., Zalevsky Z.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2000)

    Google Scholar 

  10. Almeida L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  11. Barshan B., Ozaktas H.M., Kutay M.A.: Optimal filters with linear canonical transformations. Opt. Commun. 135(1–3), 32–36 (1997)

    Article  Google Scholar 

  12. Sharma K.K., Joshi S.D.: Signal separation using linear canonical and fractional Fourier transforms. Opt. Commun. 265(2), 454–460 (2006)

    Article  Google Scholar 

  13. Deng B., Tao R., Wang Y.: Convolution theorem for the linear canonical transform and their applications. Sci. China F 49(5), 592–603 (2006)

    Article  MathSciNet  Google Scholar 

  14. Li B.Z., Tao R., Wang Y.: New sampling formulae related to linear canonical transform. Signal Process. 87(5), 983–990 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koc A., Ozaktas H.M., Candan C., Kutay M.A.: Digital computation of linear canonical transforms. IEEE Trans. Signal Process. 56(6), 2383–2394 (2008)

    Article  MathSciNet  Google Scholar 

  16. Healy J.J., Sheridan J.T.: Cases where the linear canonical transform of a signal has compact support or is band-limited. Opt. Lett. 33(3), 228–230 (2008)

    Article  Google Scholar 

  17. Tao R., Li B.Z., Wang Y., Aggrey G.K.: On sampling of band-limited signals associated with the linear canonical transform. IEEE Trans. Signal Process. 56(11), 5454–5464 (2008)

    Article  MathSciNet  Google Scholar 

  18. Pei S.C., Ding J.J.: Closed-form discrete fractional and affine Fourier transforms. IEEE Trans. Signal Process. 48(5), 1338–1353 (2002)

    MathSciNet  Google Scholar 

  19. Hennelly B.M., Sheridan J.T.: Fast numerical algorithm for the linear canonical transform. J. Opt. Soc. Am. A 22(5), 928–937 (2005)

    Article  MathSciNet  Google Scholar 

  20. Healy J.J., Sheridan J.T.: Sampling and discretization of the linear canonical transform. Signal Process. 89(4), 641–648 (2009)

    Article  MATH  Google Scholar 

  21. Oktem F.S., Ozaktas H.M.: Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. J. Opt. Soc. Am. A 27(8), 1885–1895 (2010)

    Article  Google Scholar 

  22. Weisstein E.W.: CRC Concise Encyclopedia of Mathematics. CRC Press, Boca Raton (2003)

    Google Scholar 

  23. Harris, F.J.: On the use of windows for harmonic analysis with discrete Fourier transform. In: Proceedings of the IEEE, vol. 66(1), pp. 51–83 (1978)

  24. Liu Y., Kou K., Ho I.: New sampling formulae for non-band limited signals associated with linear canonical transform and non linear Fourier atoms. Signal Process. 90, 933–945 (2010)

    Article  MATH  Google Scholar 

  25. Alieva T., Bastiaans M.J.: Properties of the linear canonical integral transformation. J. Opt. Soc. Am. A. 24(11), 3658– 3665 (2007)

    Article  MathSciNet  Google Scholar 

  26. Kumar S., Singh K., Saxena R.: Analysis of Dirichlet and generalized “Hamming” window functions in the fractional Fourier transform domains. Signal Process. 91, 600–606 (2010)

    Article  Google Scholar 

  27. James D.F.V., Agarwal G.S.: The generalized Fresnel transform and its applications to optics. Opt. Commun. 126(4–6), 207–212 (1996)

    Article  Google Scholar 

  28. Bernardo L.M.: ABCD matrix formalism of fractional Fourier optics. Opt. Eng. 35(3), 732–740 (1996)

    Article  Google Scholar 

  29. Abe S., Sheridan J.T.: Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation. Opt. Lett. 19(22), 1801–1803 (1994)

    Article  Google Scholar 

  30. Zhao J., Tao R., Wang Y.: Sampling rate conversion for linear canonical transform. Signal Process. 88, 2825–2832 (2008)

    Article  MATH  Google Scholar 

  31. Dainty, J.C.: Current Trends in Optics. Academic Press, New York, Ch. 10, pp. 139–148 (1994)

  32. Abramowitz M., Stegun I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, vol. 55 of National Bureau of Standards Applied Mathematics Series. US Government Printing Office, Washington, DC (1964)

    Google Scholar 

  33. Saxena R., Singh K.: Fractional Fourier transform—a review. IETE J. Educ. 48, 13–30 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navdeep Goel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goel, N., Singh, K. Analysis of Dirichlet, Generalized Hamming and Triangular window functions in the linear canonical transform domain. SIViP 7, 911–923 (2013). https://doi.org/10.1007/s11760-011-0280-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0280-2

Keywords

Navigation