Skip to main content

Advertisement

Log in

Color image segmentation: a novel spatial fuzzy genetic algorithm

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Image segmentation is a very important low-level vision task. It is the perceptual grouping of pixels based on some similarity criteria. In this article, we have applied spatial fuzzy genetic algorithm (SFGA) for the unsupervised segmentation of color images. The SFGA adds diversity to the search process to find the global optima. The performance of SFGA is influenced by two factors: first, K number of clusters—should be known in advance; second, the initialization of the cluster centers. To overcome these issues, a progressive technique based on self-organizing map is presented to find out the optimal K number of clusters automatically. To handle the initialization problem, peaks are identified using the image color histograms. The genetic algorithm with fuzzy behavior maximizes the fuzzy separation and minimizes the global compactness among the segments. The segmentation is performed on wavelet transform image which not only reduces the dimensionality and computational cost but also makes more compact segments. A novel pruning technique is proposed to handle the problem of over-segmentation. The results show that the proposed technique outperforms state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lucchese, L., Mitra, S.K.: Color image segmentation: a state of the art survey. In: Proceedings of the Indian National Science Academy on Image Processing, Vision Pattern Recognition, vol. 67, no. 2, pp. 207–221 (2001)

  2. Loo, P.K., Tan, C.L.: Adaptive region growing color segmentation for text using irregular pyramid. In: International Workshop on Document Analysis Systems, vol. 3163, pp. 264–275 (2004)

  3. Kass M., Witkin A., Terzopoulos D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  4. Cohen L.: On active contour models and balloons. CVGIP Image Underst. 53(2), 211–218 (1991)

    Article  MATH  Google Scholar 

  5. Xu C., Prince J.: Snakes, shapes, and gradient vector flow. In: IEEE Trans. Image Process. 7(3), 359–369 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Mortensen E., Barrett W.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60(5), 349–384 (1998)

    Article  MATH  Google Scholar 

  7. Besag J.: On the statistical analysis of dirty pictures. J. R. Stat. Soc. B 48, 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Boy Kov, Y., Jolly, M.: Interactive graph cuts for optimal boundary region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)

  9. Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts ? In: IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

  10. Rother C., Kolmogorov V., Blake A.: Grabcut interactive foreground extraction using iterated graphcuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Article  Google Scholar 

  11. Li Y., Sun J., Tang C.K., Shum H.Y.: Lazy snapping. ACM Trans. Graph. 23(3), 303–308 (2004)

    Article  Google Scholar 

  12. Beucher S., Meyer F.: The morphological approach to segmentation: the watershed transformation. Math. Morphol. Image Process. 34, 433–481 (1993)

    Google Scholar 

  13. Vincent L., Soille P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. In: IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1999)

    Google Scholar 

  14. Duda R., Hart P., Stork D.: Pattern Classification, 2nd edn. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  15. Ahmed M.N., Yamany S.M., Farag A.A., Mohamed N., Moriarty T.: A modified fuzzy C-means algorithm for bias field estimation and segmentation of mri data. In: IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Google Scholar 

  16. Chuang K.S, Tzeng H.L., Chen S., Chen T.J.: Fuzzy C-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9–15 (2006)

    Article  Google Scholar 

  17. Choi H., Baraniuk R.G.: Multiscale image segmentation using wavelet-domain hidden markov models. In: IEEE Trans. Image. Process. 10(9), 1309–1321 (2001)

    MathSciNet  Google Scholar 

  18. Chang T., Jay Kuo C.J.: Texture analysis and classification with tree-structured wavelet transform. In: IEEE Trans. Image. Process. 2(4), 429–441 (1993)

    Google Scholar 

  19. Kohonen T.: Self-Organising Maps, Springer Series in Information Sciences. 3rd edn, vol. 30. Heidelberg, Berlin (2001)

    Google Scholar 

  20. Pena J.M., Lozano J.A., Larranaga P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recognit. Lett. 20, 1027–1040 (1999)

    Article  Google Scholar 

  21. Tan K.S., MatIsa N.A.: Color image segmentation using histogram thresholding fuzzy C-means hybrid approach. Pattern Recognit. 44, 1–15 (2011)

    Article  MATH  Google Scholar 

  22. Ilea D.E., Whelan P.F.: Ctex—an adaptive unsupervised segmentation algorithm based on colour-texture coherence. In: IEEE Trans. Image Process. 17(10), 1926–1939 (2008)

    MathSciNet  Google Scholar 

  23. Mukhopadhyay A., Maulik U., Bandyopadhyay S.: Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes. In: IEEE Trans. Evolut. Comput. 13(5), 992–1005 (2009)

    Google Scholar 

  24. Tsekouras G.E., Papageorgiou D., Kotsiantis S., Kalloniatis C., Pintelas P.: Fuzzy clustering of categorical attributes and its use in analyzing cultural data. Int. J. Comput. Intell. 1(3), 147–151 (2004)

    Google Scholar 

  25. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference Computer Vision, vol. 2, pp. 416–423 (2001)

  26. Yang A.Y., Wright J., Sastry S.S., Ma Y.: Unsupervised segmentation of natural images via lossy data compression. Comput. Vis. Image Underst. 110(2), 212–225 (2008)

    Article  Google Scholar 

  27. Nock R., Nielsen F.: Statistical region merging. In: IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1452–1458 (2004)

    Google Scholar 

  28. Vazquez E., Baldrich R., Weijer J., Vanrell M.: Describing reflectances for colour segmentation robust to shadows, highlights and textures. J. Latex Class Files 6(1), 1–15 (2007)

    Google Scholar 

  29. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference Computer Vision, vol. 2, pp. 416–423 (2001)

  30. Freixenet, J., Munoz, X., Raba, D., Marti, J., Cufi, X.: Yet another survey on image segmentation: Region and boundary information integration. In: Proceedings of the European Conference Computer Vision, pp. 408–422 (2002)

  31. Unnikrishnan R., Pantofaru C., Hebert M.: Toward objective evaluation of image segmentation algorithms. In: IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

    Google Scholar 

  32. Meila, M.: Comparing clusterings-an axiomatic view. In: Proceedings of the International Conference Machine Learning, pp. 577–584 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Arfan Jaffar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Ullah, J., Jaffar, M.A. et al. Color image segmentation: a novel spatial fuzzy genetic algorithm. SIViP 8, 1233–1243 (2014). https://doi.org/10.1007/s11760-012-0347-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0347-8

Keywords

Navigation