Skip to main content
Log in

Using anisotropic diffusion equations in pixon domain for image de-noising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Image enhancement is an essential phase in many image processing algorithms. In any image de-noising algorithm, it is a major concern to keep the interesting structures of the image. Such interesting structures in an image often correspond to the discontinuities in the image (edges). In this paper, we propose a new algorithm for image de-noising using anisotropic diffusion equations in pixon domain. In this approach, diffusion equations are applied on the pixonal model of the image. The algorithm has been examined on a variety of standard images and the performance has been compared with algorithms known from the literature. The experimental results show that in comparison with the other existing methods, the proposed algorithm has a better performance in de-noising and preserving image edges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouzari H.: An improved regularization method for artifact rejection in image super-resolution. Signal Image Video Process. 6(1), 125–140 (2012)

    Article  Google Scholar 

  2. Min T.H., Park R.H., Chang S.K.: Noise reduction in high dynamic range images. Signal Image Video Process 5(3), 315–328 (2011)

    Article  Google Scholar 

  3. Santis A.D., Iacoviello D.: A discrete level set approach to image segmentation. Signal Image Video Process. 1(4), 303–320 (2007)

    Article  MATH  Google Scholar 

  4. Gonzalez R.C., Woods R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ (2008)

    Google Scholar 

  5. Zhong J., Ning R., Conover D.: Image denoising based on multiscale singularity detection for cone Beam CT breast imaging. In: IEEE Trans. Med. Imaging 23, 696–703 (2004)

    Article  Google Scholar 

  6. Mielikäinen, T., Ravantti, J.: Sinogram denoising of cryo-electron microscopy images. In: International Conference on Computational Science and its Applications, Singapore, pp. 9–12 (2005)

  7. Senel H.G., Peteres R.A., Dawant B.: Topological median filters. In: IEEE Trans. Image Process. 11, 89–104 (2002)

    Article  Google Scholar 

  8. Koschan, A.F., Abidi, M.A.: A comparison of median filter techniques for noise removal in color images. In: Proceedings of 7th German Workshop on Color Image Processing, Erlangen, Germany, pp. 69–79 (2001)

  9. Wang, Z., Qu, C., Cui, L.: Denoising images using Wiener filter in directionalet domain. In: Proceedings of International Conference on Computational Intelligence for Modeling Control and Automation. NSW, Sydney (2006)

  10. Fodor, I.E., Kamath, C.: On denoising images using wavelet-based statistical techniques. Technical report UCRLJC-142357, Lawrence Livermore National Laboratory (2001)

  11. Jansen M.: Noise Reduction by Wavelet Thresholding. Springer, New York (2001)

    Book  MATH  Google Scholar 

  12. Yu, Y., Acton, S.T.: (2002) Speckle reducing anisotropic diffusion. In: IEEE Trans. Image Process. 11(11), 1260–1270

  13. Chang S.G., Yu B., Vetterli M.: Spatially adaptive wavelet thresholding with context modeling for image denoising. In: IEEE Trans. Image Process. 9(9), 1522–1531 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang S.G., Yu B., Vetterli M.: Adaptive wavelet thresholding for image denoising and compression. In: IEEE Trans. Image Process. 9(9), 1532–1545 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Smigiel, E., Alby, E., Grussenmeyer, P.: Terrestrial Laser Scanner Data Denoising by Range Image Processing for Small-Sized Objects. ISPRS Congress Beijing (2008)

  16. Catte F., Lions P.L., Morel J.M., Coll T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xiaogang D., Pollak I.: Multiscale segmentation with vector-valued nonlinear diffusions on arbitrary graphs. In: IEEE Trans. Image Process. 15, 1993–2005 (2006)

    Article  Google Scholar 

  18. Lee S.H., Kang M.G., Park T.K.: CCD noise filtering based on 3-dimensional nonlinear partial differential equation. In: IEEE Trans. Consum. Electron. 44, 1086–1090 (1998)

    Article  Google Scholar 

  19. Pollak I., Willsky A.S., Krim H.: Image segmentation and edge enhancement with stabilized inverse diffusion equations. In: IEEE Trans. Image Process. 9, 256–266 (2000)

    Article  MATH  Google Scholar 

  20. Weickert J., Romeny B.M., Viergever M.: Efficient and reliable schemes for nonlinear diffusion filtering. In: IEEE Trans. Image Process. 7, 398–410 (1998)

    Article  Google Scholar 

  21. Aubert G., Kornprobst P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  22. Hassanpour, H., Nadernejad, E., Miar, H.: Image enhancement using diffusion equations. In: 9th International Symposium on Signal Processing and Its Applications, Sharjah, pp. 1–4 (2007)

  23. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. In: IEEE Computer Society Workshop on Computer Vision, pp. 16–27 (1987)

  24. Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. In: IEEE Trans. Pattern Anal. Mach. Intell. 127, 629–639 (1990)

    Article  Google Scholar 

  25. Piña R.K., Pueter R.C.: Bayesian image reconstruction: the pixon and optimal image modeling. Astron. Soc. Pac. 105(688), 630–637 (1993)

    Article  Google Scholar 

  26. Puetter R.C.: Pixon-based multiresolution image reconstruction and the quantification of picture information content. Int. J. Imaging Syst. Technol. 6, 314–331 (1995)

    Article  Google Scholar 

  27. Lu Q., Jiang T.: Pixon-based image denoising with Markov random fields. Pattern Recognit. 34, 2029–2039 (2001)

    Article  MATH  Google Scholar 

  28. Yang, F., Jiang, T.: Pixon-based image segmentation with Markov random fields. In: The 5th Asian Conference on Computer Vision, Melbourne, Australia (2002)

  29. Yang F., Jiang T.: Pixon-based image segmentation with Markov random fields. In: IEEE Trans. Image Process. 12, 1552–1559 (2003)

    Article  Google Scholar 

  30. Handloviová A., Mikula K., Sgallari F.: Variational numerical methods for solving nonlinear diffusion equations arising in image processing. J. Vis. Commun. Image Represent. 13, 217–237 (2002)

    Article  Google Scholar 

  31. Weickert J., Scharr H.: A scheme for coherence enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent. 13, 103–118 (2002)

    Article  Google Scholar 

  32. Weeratunga, S.K., Kamath, C.: PDE-based nonlinear diffusion techniques for denoising scientific/industrial images: an empirical study. In: Proceedings, Image Processing: Algorithms and Systems, SPIE Electronic Imaging, San Jose, pp. 279–290 (2002)

  33. Krivá Z., Mikula K.: An adaptive finite volume scheme for solving nonlinear diffusion equations in image processing. J. Vis. Commun. Image Represent. 13, 22–35 (2002)

    Article  Google Scholar 

  34. Mittal D., Kumar V., Saxena S.C., Khandelwal N., Kalra N.: Enhancement of the ultrasound images by modified anisotropic diffusion method. Med. Biol. Eng. Comput. 48(12), 1281–1291 (2010)

    Article  Google Scholar 

  35. Suk M.: A new image segmentation technique based on partition mode test. Pattern Recognit. 16, 469–480 (1983)

    Article  Google Scholar 

  36. Hassanpour, H., Yousefian, H., Zehtabian, A.: Pixon-based image segmentation. In: Ho, P.-G. (ed.) Image Segmentation. InTech, Rijeka, pp. 496–516 (2011). ISBN:978-953-307-228-9

  37. Pratt W.K.: Digital Image Processing. Wiley, New York (2001)

    Book  Google Scholar 

  38. Yang Z., Fox M.D.: Speckle reduction and structure enhancement by multichannel median boosted anisotropic diffusion. EURASIP J. Appl. Signal Process. 16, 2492–2502 (2004)

    Article  Google Scholar 

  39. Wang Z., Bovik A.C.: A universal image quality index. In: IEEE Signal Process. Lett. 9, 81–84 (2002)

    Article  Google Scholar 

  40. Guo, H., Odegard, J.E., Lang, M.R., Gopinath, A., Selesnick, I., Burrus, C.S.: Speckle reduction via wavelet shrinkage with application to SAR based ATD/R. Technical report CML TR94-02, CML, Rice University, Houston (1994)

  41. Gonzalez, R.C., Woods, R.E.: Image databases. http://www.imageprocessingplace.com

  42. Medical Information Finder. http://www.netmedicine.com

  43. Buades, A., Coll, B., Morel, J.M.: A non local algorithm for image denoising. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65 (2005)

  44. Tso B., Paul M.: Classification Methods for Remotely Sensed Data, pp. 37–38. CRC Press, Boca Raton (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Nadernejad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadernejad, E., Sharifzadeh, S. & Forchhammer, S. Using anisotropic diffusion equations in pixon domain for image de-noising. SIViP 7, 1113–1124 (2013). https://doi.org/10.1007/s11760-012-0356-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0356-7

Keywords

Navigation