Skip to main content
Log in

Efficacy of Pearson distributions for characterization of gray levels in clinical ultrasound kidney images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A major issue in characterization of clinical Ultrasound B-mode images has been to identify a few probability distributions which can broadly classify images of human organs. This paper precisely addresses the concern by resorting to statistical characterization of gray levels in 100 clinical B-mode ultrasound kidney images. A detailed investigation of central and peripheral kidney regions is carried out. Pearson family of distributions is employed as a means to model the images and to provide analytical expression of the suitable pdf in terms of the parameter \(\kappa \). In majority of cases, it is noted that type I Pearson distribution (corresponding to negative \(\kappa \)) yields the best fit. For testing the efficacy of Pearson family of distributions in relation to commonly used probability distributions viz. Nakagami, Inverse Gaussian, Gamma, and Weibull, performance measures based on Jensen–Shannon divergence and Kolmogorov–Smirnov test statistics are used. The statistical analysis reveals that Pearson family of distributions outperforms which is evident through cumulative ranking of probability distributions considered in the study. This study attempts to identify the Pearson types which can universally characterize the clinical US B-mode images of different human organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Agarwal, R., Karmeshu: Ultrasonic backscattering in tissue: characterization through Nakagami-generalized inverse Gaussian distribution. Comput. Biol. Med. 37(2), 166–172 (2007)

  2. Bouhlel, N., Sevestre-Ghalila, S.: Nakagami Markov random field as texture model for ultrasound RF envelope image. Comput. Biol. Med. 39(6), 535–544 (2009)

    Article  Google Scholar 

  3. Delignon, Y., Pieczynski, W.: Modeling non-Rayleigh speckle distribution in SAR images. IEEE Trans. Geosci. Remote Sens. 40(6), 1430–1435 (2002)

    Article  Google Scholar 

  4. Destrempes, F., Meunier, J., Giroux, M.F., Soulez, G., Cloutier, G.: Segmentation in ultrasonic B-mode images of healthy carotid arteries using mixtures of Nakagami distributions and stochastic optimization. IEEE Trans. Med. Imaging 28(2), 215–228 (2009)

    Article  Google Scholar 

  5. Doane, D.P.: Aesthetic frequency classification. Am. Stat. 30(4), 181–183 (1976)

    MathSciNet  Google Scholar 

  6. Elderton, W.P., Johnson, N.L.: System of Frequency Curves. Cambridge University Press, London (1969)

  7. Eltoft, T.: The Rician inverse Gaussian distribution: a new model for non-Rayleigh signal amplitude statistics. IEEE Trans. Image Process. 14, 1722–1735 (2005)

    Article  MathSciNet  Google Scholar 

  8. Eltoft, T.: Modeling the amplitude statistics of ultrasonic images. IEEE Trans. Med. Imaging 25, 229–240 (2006)

    Article  Google Scholar 

  9. Gentle, J.A.: Computational Statistics. Springer, Germany (2009)

  10. Gupta, A., Karmeshu: Statistical characterisation of speckle in clinical echocardiographic images with Pearson family of distributions. Def. Sci. J. 61(5), 473–478 (2011)

  11. Jakeman, E.: K distributed noise. J. Opt. A Pure Appl. Opt. 1, 784–789 (1999)

    Article  Google Scholar 

  12. Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, Canada (1994)

  13. Karmeshu, Agarwal, R.: Study of ultrasonic echo envelope based on Nakagami inverse Gaussian disribution. Ultrasound Med. Biol. 32(3), 371–376 (2006)

  14. Karmeshu: Entropy measures, maximum entropy principle and emerging applications. Springer, Germany (2003)

  15. Ketchantang, W., Derrode, S., Martin, L., Bourennane, S.: Pearson-based mixture model for color object tracking. Mach. Vis. Appl. 19, 457–466 (2008)

    Article  MATH  Google Scholar 

  16. Kwan, R., Leung, C.: On the applicability of the Pearson method for approximating distributions in wireless communications. IEEE Trans. Commun. 55(11), 2065–2069 (2007)

    Article  Google Scholar 

  17. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1), 145–151 (1991)

    Article  MATH  Google Scholar 

  18. Massey, J.F.: The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)

    Article  MATH  Google Scholar 

  19. Nie, H., Chen, S.: Lognormal sum approximation with type IV Pearson distribution. IEEE Commun. Lett. 11, 790–792 (2007)

    Article  Google Scholar 

  20. Nillesen, M.N., Lopata, R.G.P., Gerrits, I.H., Kapusta, L., Thijssen, J.M., Korte, C.D.: Modeling envelope statistics of blood and myocardium for segmentation of echocardiographic images. Ultrasound Med. Biol. 34(4), 674–680 (2008)

    Article  Google Scholar 

  21. Raju, B.I., Srinivasan, M.A.: Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 871–882 (2002)

    Google Scholar 

  22. Raju, B.I., Swindells, K.J., Gonzales, S., Srinivasan, M.A.: Quantitative ultrasonic methods for characterization of skin lesions in vivo. Ultrasound Med. Biol. 29, 825–838 (2003)

    Google Scholar 

  23. Renzo, M.D., Graziosi, F., Santucci, F.: Approximating the linear combination of log-normal RVs via Pearson type IV distribution for UWB performance analysis. IEEE Trans. Commun. 57(2), 388–403 (2009)

    Article  Google Scholar 

  24. Roy, L.K.: An extension of the Pearson systems of frequency curves. Trabajos de Estadstica Investigacin Operativa 22, 113–123 (1971)

    Article  MATH  Google Scholar 

  25. Shankar, P.M.: A general statistical model for ultrasonic backscattering from tissues. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(3), 727–736 (2000)

    Article  Google Scholar 

  26. Shankar, P.M.: Ultrasonic tissue characterization using a generalized Nakagami model. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(6), 1716–1720 (2001)

    Article  MathSciNet  Google Scholar 

  27. Shankar, P.M.: A compound scattering pdf for the ultrasonic echo envelope and its relationship to K and Nakagami distributions. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 339–343 (2003)

    Google Scholar 

  28. Shankar, P.M.: The use of compound probability density function in ultrasound tissue characterization. Phys. Med. Biol. 49, 1007–1015 (2004)

    Article  Google Scholar 

  29. Shankar, P.M., Reid, J.M., Ortega, H., Piccoli, C.W., Goldberg, B.B.: Use of non-Rayleigh statistics for the identification of tumors in ultrasonic B-scans of the breast. IEEE Trans. Med. Imaging 12(4), 687–692 (1993)

    Article  Google Scholar 

  30. Shankar, P.M., Dumane, V.A., Reid, J.M., Genis, V., Forsberg, F., Piccoli, C.W., Goldberg, B.B.: Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(2), 569–580 (2001)

    Google Scholar 

  31. Shankar, P.M., Forsberg, F., Lown, L.: Statistical modeling of atherosclerotic plaque in carotid Bmode imagesa feasibility study. Ultrasound Med. Biol. 29, 1305–1309 (2003)

    Google Scholar 

  32. Tao, Z., Tagare, H.D., Beaty, J.D.: Evaluation of four probability distribution models for speckle in clinical cardiac ultrasound mages. IEEE Trans. Med. Imaging 25(11), 1483–1491 (2006)

    Article  Google Scholar 

  33. Tsui, P.H., Wang, S.H., Huang, C.C.: The effect of logarithmic compression on estimation of the Nakagami parameter for ultrasonic tissue characterization: a simulation study. Phys. Med. Biol. 50, 3235–3244 (2005)

    Article  Google Scholar 

  34. Wagner, R.F., Smith, S.W., Sandrik, J.M., Lopez, H.: Statistics of speckle in ultrasound B-scans. IEEE Trans. Sonics Ultrason. 30(3), 156–163 (1983)

    Article  Google Scholar 

  35. York, G., Kim, Y.: Ultrasound processing and computing: review and future directions. Annu. Rev. Biomed. Eng. 1, 559–588 (1999)

    Article  Google Scholar 

  36. Zhang, Q.T., Song, S.H.: A systematic procedure for accurately approximating lognormal-sum distributions. IEEE Trans. Veh. Technol. 57(1), 663–666 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the reviewers for their valuable suggestions and comments, which led to significant improvement in the paper. The first author acknowledges and thanks Dr. Yogesh Sharma, Radiologist and Sonologist, Noida Diagnostics Centre, Noida, UP, India, for providing US images and his institute for approving the experimental protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karmeshu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Karmeshu Efficacy of Pearson distributions for characterization of gray levels in clinical ultrasound kidney images. SIViP 9, 1317–1334 (2015). https://doi.org/10.1007/s11760-013-0578-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0578-3

Keywords

Navigation