Skip to main content
Log in

Background estimation method with incremental iterative Re-weighted least squares

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The basic steps for computer vision-based automatic video analysis are to detect and track objects. In order to do these steps, the most important and commonly used methods are background subtraction methods. This paper proposes a novel background subtraction method, which is a member of estimation-based background model, involving robust regression technique. The method proposed can estimate backgrounds at enough precision even when there are foreground objects stationary for a long time, which is often the case in images belonging to urban traffic cameras. The method has been tested with existing datasets in the literature and proved its success compared with other known methods. Moreover, it has been tested also with the dataset prepared during this research, which involves images where vehicles stop in different periods and then move again.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.yarbis1.yildiz.edu.tr/muhammet-page23717.

References

  1. Buch, N., Velastin, S., Orwell, J.: A review of computer vision techniques for the analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 12, 920–939 (2011)

    Article  Google Scholar 

  2. Lo, B., Velastin, S.: Automatic congestion detection system for underground platforms. In: Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2001, pp. 158–161. IEEE (2001)

  3. Calderara, S., Melli, R., Prati, A., Cucchiara, R.: Reliable background suppression for complex scenes. In: Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, pp. 211–214. ACM (2006)

  4. McFarlane, N.J., Schofield, C.P.: Segmentation and tracking of piglets in images. Mach. Vis. Appl. 8(3), 187–193 (1995)

    Article  Google Scholar 

  5. Cucchiara, R., Grana, C., Piccardi, M., Prati, A.: Detecting moving objects, ghosts, and shadows in video streams. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1337–1342 (2003)

    Article  Google Scholar 

  6. Wren, C.R., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: real-time tracking of the human body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

    Article  Google Scholar 

  7. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  8. Zivkovic, Z.: Improved adaptive gaussian mixture model for background subtraction. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 2, pp. 28–31. IEEE (2004)

  9. Tuzel, O., Porikli, F., Meer, P.: A bayesian approach to background modeling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, 2005. CVPR Workshops, pp. 58–58. IEEE (2005)

  10. Elgammal, A., Duraiswami, R., Harwood, D., Davis, L.S.: Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proc. IEEE 90(7), 1151–1163 (2002)

    Article  Google Scholar 

  11. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 38–43. IEEE (2012)

  12. Barnich, O., Van Droogenbroeck, M.: Vibe: a universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing 20(6), 1709–1724 (2011)

    Article  MathSciNet  Google Scholar 

  13. Chang, R., Gandhi, T., Trivedi, M.: Computer vision for multi-sensory structural health monitoring system. In: 7th IEEE Conference on Intelligent Transportation Systems (2004)

  14. Messelodi, S., Modena, C.M., Zanin, M.: A computer vision system for the detection and classification of vehicles at urban road intersections. Pattern Anal. Appl. 8(1–2), 17–31 (2005)

    Article  MathSciNet  Google Scholar 

  15. Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via a robust kalman filter. In: Proceedings. Ninth IEEE International Conference on Computer Vision, 2003, pp. 44–50. IEEE (2003)

  16. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  17. Wu, J., Xia, J., Ming Chen, J., Ming Cui, Z.: Adaptive detection of moving vehicle based on on-line clustering. J. Comput. 6(10), 2045–2052 (2011)

    Google Scholar 

  18. Benalia, M., Ait-Aoudia, S.: An improved basic sequential clustering algorithm for background construction and motion detection. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition, pp. 216–223. Springer, Berlin (2012)

    Chapter  Google Scholar 

  19. Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.: Background modeling and subtraction by codebook construction. In: 2004 International Conference on Image Processing, 2004. ICIP’04, vol. 5, pp. 3061–3064. IEEE (2004)

  20. Hu, H., Xu, L., Zhao, H.: A spherical codebook in yuv color space for moving object detection. Sens. Lett. 10(1–2), 177–189 (2012)

  21. Oliver, N.M., Rosario, B., Pentland, A.P.: A bayesian computer vision system for modeling human interactions. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 831–843 (2000)

  22. Wang, L., Wang, L., Wen, M., Zhuo, Q., Wang, W.: Background subtraction using incremental subspace learning. In: IEEE International Conference on Image Processing, 2007. ICIP 2007, vol. 5, pp. 45–48. IEEE (2007)

  23. Zhou, T., Tao, D.: Godec: Randomized low-rank and sparse matrix decomposition in noisy case. In: Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp. 33–40 (2011)

  24. Guyon, C., Bouwmans, T., Zahzah, E.-H.: Foreground detection via robust low rank matrix decomposition including spatio-temporal constraint. In: Computer Vision-ACCV 2012 Workshops, pp. 315–320. Springer, Berlin (2013)

  25. Maddalena, L., Petrosino, A.: A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans. Image Process. 17(7), 1168–1177 (2008)

    Article  MathSciNet  Google Scholar 

  26. Bouwmans, T.: Recent advanced statistical background modeling for foreground detection: a systematic survey. Recent Pat. Comput. Sci. 4(3), 147–176 (2011)

  27. Bouwmans, T., Zahzah, E.H.: Robust PCA via principal component pursuit: a review for a comparative evaluation in video surveillance. Comput. Vis. Image Underst. 122, 22–34 (2014)

    Article  Google Scholar 

  28. Cowles, M.K.: An r and s-plus companion to applied regression. Am. Stat. 57(4), 316–316 (2003)

    Article  Google Scholar 

  29. Li, L., Huang, W., Gu, I.Y., Tian, Q.: Foreground object detection from videos containing complex background. In: Proceedings of the Eleventh ACM International Conference on Multimedia, pp. 2–10. ACM (2003)

  30. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 1, pp. 255–261. IEEE (1999)

  31. Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J., Ishwar, P.: Changedetection. net: a new change detection benchmark dataset. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1–8. IEEE (2012)

  32. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240. ACM (2006)

  33. Sobral, A., Vacavant, A.: A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos. Comput. Vis. Image Underst. 122, 4–21 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Balcilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balcilar, M., Sonmez, A.C. Background estimation method with incremental iterative Re-weighted least squares. SIViP 10, 85–92 (2016). https://doi.org/10.1007/s11760-014-0705-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0705-9

Keywords

Navigation