Skip to main content
Log in

Application of quantum dot gate nonvolatile memory (QDNVM) in image segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents the application of quantum dot gate nonvolatile memory (QDNVM) in image processing application. The charge accumulation in the gate region varies the threshold voltage of QDNVM, which can be used as a reference voltage source in a comparator circuit. A simplified comparator circuit can be implemented using the QDNVM. In this work, the use of QDNVM-based comparators in image processing specially image segmentation is demonstrated, which can be efficient in future image processing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Sen, S., Capasso, F., Cho, A.Y., Sivco, D.L.: Multiple-state resonant-tunneling bipolar transistor operating at room temperature and its application as a frequency multiplier. IEEE Electron Device Lett. 9, 533 (1998)

    Article  Google Scholar 

  2. Reed, M.A., Frensley, W.R., Matyi, R.J., Randall, J.N., Seabauggh, A.C.: Realization of a three terminal resonant tunneling device: the bipolar quantum resonant tunneling transistor. Appl. Phys. Lett. 54, 1034 (1989)

    Article  Google Scholar 

  3. Uemura, T., Mazumder, P.: Design and analysis of resonant-tunneling-diode (RTD) based high performance memory system. IEICE Trans. Electron. E82–C, 1630 (1999)

    Google Scholar 

  4. Lin, H.C.: Resonant tunneling diodes for multi-valued digital applications. In: Proceedings of 24th IEEE international symposium multiple-valued logic, pp. 188–195 (1994)

  5. Mazumder, P., Kulkarni, S., Bhattacharya, M., Sun, J.P., Haddad, G.I.: Digital circuit applications of resonant tunneling devices. Proc. IEEE 86, 664 (1998)

    Article  Google Scholar 

  6. Lee, K.W., Sze, P.W., Lin, Y.J., Ying, N., Houng, M.P., Wang, Y.H.: InGaP/InGaAs metal-oxide-semiconductor pseudomorphic high-electron-mobility transistor with a liquid-phase-oxidized InGaP as gate dielectric. IEEE Electron Device Lett. 26, 864 (2005)

    Article  Google Scholar 

  7. Karmakar, S., Suarez, E., Gogna, M., Jain, F.: ZnS-ZnMgS-ZnS lattice matched gate insulator as an alternative for silicon dioxide on silicon in quantum dot gate FETs (QDGFETs). J. Electron. Mater. 41, 2663–2670 (2012)

  8. Velampati, R.: Quantum dot nonvolatile memory: modeling and fabrication. PhD thesis, University of Connecticut (2007)

  9. Gogna, M., Suarez, E., Chan, P.Y., Al-Amoody, F., Karmakar, S., Jain, F.: Nonvolatile silicon memory using GeO x-cladded Ge quantum dots self-assembled on \(\text{ SiO }_{2}\) and lattice-matched II–VI tunnel insulator. J. Electron. Mater. 40, 1769–1774 (2011)

    Article  Google Scholar 

  10. Phely-Bobin, T., Chattopadhyay, D., Papadimitrakopoulos, F.: Characterization of mechanically attrited Si/SiOx nanoparticles and their self-assembled composite films. Chem. Mater. 14, 1030–1036 (2002)

  11. Jain, F., Papadimitrakopoulos, F.: Site-specific nanoparticle self-assembly. US Patent 7,368,370, (2008)

  12. Karmakar, S., Chandy, J.A., Gogna, M., Jain, F.C.: Fabrication and circuit modeling of NMOS inverter based on quantum dot gate field-effect transistors. J. Electron. Mater. 41, 2184–2192 (2012)

    Article  Google Scholar 

  13. Karmakar, S., Gogna, M., Jain, F.C.: Improved device structure of quantum dot gate FET to obtain more stable intermediate state. Electron. Lett. 48, 1556–1557 (2012)

    Article  Google Scholar 

  14. Karmakar, S., Chandy, J.A., Jain, F.C.: Design of ternary logic combinational circuits based on quantum dot gate FETs. IEEE Trans. Very Large Scale Integr. Syst. 21, 793–806 (2012)

    Article  Google Scholar 

  15. Karmakar, S., Suresh, A.P, Chandy, J.A., Jain, F.C.: Design of ADCs and DACs using 3-state quantum dot gate FETs. In: International semiconductor device research symposium, College Park, MD, 9–11 Dec (2009)

  16. Arora, S., Acharya, J., Verma, A., Panigrahi, P.K.: Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognit. Lett. 29, 119–125 (2008)

    Article  Google Scholar 

  17. Al-amri, S.S., Kalyankar, N.V., Khamitkar, S.D.: Image segmentation by using threshold techniques. J. Comput. 2, 83–86 (2010)

    Google Scholar 

  18. Papamarkos, N., Strouthopoulos, C., Andreadis, I.: Multithresholding of color and gray-level images through a neural network technique. Image Vis. Comput. 18, 213–222 (2000)

    Article  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceeding of 8th international conference on computer vision, vol. 2, pp. 416–423 (2001)

  20. Meila, M.: Comparing clusterings: an axiomatic view. In: Proceeding of international on conference on machine learning, Bonn, Germany, pp. 577–584 (2005)

  21. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  22. Pantofaru, C., Hebert, M.: A comparison of image segmentation algorithms. Robotics Institute, Carnegie Mellon University, Tech. Rep. CMU-RI-TR-05-40 (2005)

  23. An, N.-Y., Pun, C.-M.: Color image segmentation using adaptive color quantization and multiresolution texture characterization. Signal Image Video Process. 8, 943–954 (2014)

    Article  Google Scholar 

  24. Zhao, Y., Liu, J., Li, H., Li., G.: Improved watershed algorithm for dowels image segmentation. In: Proceedings of the 7th world congress on intelligent control and automation (2008)

  25. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Patterns Anal. Mach. Intell. 22, 888–905 (2000)

    Article  Google Scholar 

  26. Tao, W., Jin, H., Zhang, Y., Liu, L., Wang, D.: Image thresholding using graph cuts. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 38, 1181–1195 (2008)

    Article  Google Scholar 

  27. Levin, A.: Blind motion deblurring using image statistics. Adv. Neural Inf. Process. Syst. 19, 841–848 (2006)

    Google Scholar 

  28. Liu, R., Li, Z., Jia, J.: Image partial blur detection and classification. In: Computer vision and pattern recognition, CVPR 2008. IEEE conference on 2008, pp. 1–8 (2008)

  29. Su, B., Lu, S., Tan, C.L.: Blurred image region detection and classification. In: Presented at the proceedings of the 19th ACM international conference on multimedia, Scottsdale, Arizona, USA (2011)

  30. Wang, W., Zheng, J.-J., Zhou, H.-J.: Segmentation, removing and ranking partial blur. Signal Image Video Process. 8, 647–655 (2014). doi:10.1007/s11760-013-0573-8

    Article  Google Scholar 

Download references

Acknowledgments

QDNVM was fabricated by Micro-Opto Electronics Lab members in the University of Connecticut, where author was in a leading role. The development of QDNVM circuit model as well as its application in image segmentation was done by author individually after finishing his doctoral degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Karmakar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, S., Gogna, M. & Jain, F.C. Application of quantum dot gate nonvolatile memory (QDNVM) in image segmentation. SIViP 10, 551–558 (2016). https://doi.org/10.1007/s11760-015-0773-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0773-5

Keywords

Navigation