Skip to main content
Log in

An incremental LMS network with reduced communication delay

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Successful implementation of incremental adaptive networks requires that the sampling speed of the network be faster than the time between two consecutive measurements taken by nodes. This issue affects the performance of incremental based algorithm in networks with large number of nodes as well as non-stationary environments. In this paper, we introduce a modified incremental least mean-square (ILMS) algorithm that resolves this problem. In the proposed algorithm, every node updates its local estimate when the measurement data are available (temporal processing). When the estimate from the previous node is also available, an adaptive strategy is used to combine the available estimates to further improve the network learning performance (spatial cooperation). We examine the performance of the proposed algorithm in two scenarios including the network with noisy links and non-stationary environment. Simulation results show the superior performance of the proposed algorithm in comparison with the original ILMS algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. For other examples, please refer to [14] and references therein.

    Fig. 1
    figure 1

    A multi-agent network with K nodes and incremental cooperation mode

  2. Due to ring topology which is required in the incremental cooperation, the node indices are modulo K.

  3. Note that the step-size parameter must be selected to ensure the stability of the ILMS algorithm.

References

  1. Estrin, D., Girod, L., Pottie, G., Srivastava, M.: Instrumenting the world with wireless sensor networks. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP 01). 2001 IEEE International Conference on, vol. 4, pp. 2033–2036 (2001)

  2. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52(6), 2508–2530 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Akyildiz, I.F., Melodia, T., Chowdury, K.R.: A survey on wireless multimedia sensor networks. Comput. Netw. 51(4), 921–960 (2007)

  4. Xiao, J.-J., Ribeiro, A., Luo, Z.-Q., Giannakis, G.: Distributed compression–estimation using wireless sensor networks. IEEE Signal Process. Mag. 23(4), 27–41 (2006)

    Article  Google Scholar 

  5. Schizas, I., Mateos, G., Giannakis, G.: Distributed LMS for consensus-based in-network adaptive processing. IEEE Trans. Signal Process. 57(6), 2365–2382 (2009)

    Article  MathSciNet  Google Scholar 

  6. Kar, S., Moura, J.: Convergence rate analysis of distributed gossip (linear parameter) estimation: fundamental limits and tradeoffs. IEEE J. Sel. Top. Signal Process. 5(4), 674–690 (2011)

    Article  MathSciNet  Google Scholar 

  7. Sayed, A.H., Tu, S.-Y., Chen, J., Zhao, X., Towfic, Z.: Diffusion strategies for adaptation and learning over networks. IEEE Signal Process. Mag. 30(3), 155–171 (2013)

    Article  Google Scholar 

  8. Sayed, A.: Adaptive networks. Proc. IEEE 102(4), 460–497 (2014)

  9. Chen, J., Zhao, X., Sayed, A.: Bacterial motility via diffusion adaptation. In: Signals, Systems and Computers (ASILOMAR), 2010 Conference Record of the Forty Fourth Asilomar Conference on, pp. 1930–1934 (2010)

  10. Chen, J., Sayed, A.H.: Bio-inspired cooperative optimization with application to bacteria motility. In: Proceedings of Prague, Czech Republic, May, ICASSP, pp. 5788–5791 (2011)

  11. Cattivelli, F., Sayed, A.H.: Modeling bird flight formations using diffusion adaptation. IEEE Trans. Signal Process. 59(5), 2038–2051 (2011)

    Article  MathSciNet  Google Scholar 

  12. Li, J., Sayed, A.H.: Modeling bee swarming behavior through diffusion adaptation with asymmetric information sharing. EURASIP J. Adv. Signal Process. 2012(18), 1–17 (2012)

  13. Khalili, A., Rastegarnia, A., Islam, M., Yang, Z.: A bio-inspired cooperative algorithm for distributed source localization with mobile nodes. In: Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 3515–3518 (2013)

  14. Sayed, A.H.: Diffusion adaptation over networks, CoRR, vol. abs/1205.4220 (2012)

  15. Sayed, A.H., Lopes, C.G.: Distributed recursive least-squares strategies over adaptive networks. In: Proceedings of Asilomar Conference Signals Systems, Computers, Monterey, CA, pp. 233–237 (2006)

  16. Lopes, C.G., Sayed, A.H.: Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)

    Article  MathSciNet  Google Scholar 

  17. Ram, S., Nedic, A., Veeravalli, V.: Stochastic incremental gradient descent for estimation in sensor networks. In: Signals, Systems and Computers, 2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on, pp. 582–586 (2007)

  18. Takahashi, N., Yamada, I.: Incremental adaptive filtering over distributed networks using parallel projection onto hyperslabs. IEICE Tech. Rep. 108, 17–22 (2008)

    Google Scholar 

  19. Li, L., Chambers, J.A.: A new incremental affine projection-based adaptive algorithm for distributed networks. Signal Process. 88(10), 2599–2603 (2008)

    Article  MATH  Google Scholar 

  20. Li, L., Chambers, J.A., Lopes, C.G., Sayed, A.H.: Distributed estimation over an adaptive incremental network based on the affine projection algorithm. IEEE Trans. Signal Process. 58(1), 151–164 (2010)

    Article  MathSciNet  Google Scholar 

  21. Lopes, C.G., Sayed, A.H.: Randomized incremental protocols over adaptive networks. In: Proceedings. Speech, Signal Processing (ICASSP), Dallas, TX, March, IEEE International Conference on Acoustics, pp. 3514 – 3517 (2010)

  22. Cattivelli, F., Sayed, A.H.: Analysis of spatial and incremental LMS processing for distributed estimation. IEEE Trans. Signal Process. 59(4), 1465–1480 (2011)

    Article  Google Scholar 

  23. Saeed, M., Sheikh, A.U.H.: A new lms strategy for sparse estimation in adaptive networks, in personal indoor and mobile radio communications (PIMRC). In: IEEE 23rd International Symposium on, vol. 2012, pp. 1722–1733 (2012)

  24. Abadi, M.S.E., Danaee, A.-R.: Low computational complexity family of affine projection algorithms over adaptive distributed incremental networks. AEU Int. J. Electron. Commun. 68(2), 97–110 (2014)

    Article  Google Scholar 

  25. Bogdanovic, N., Plata-Chaves, J., Berberidis, K.: Distributed incremental-based LMS for node-specific parameter estimation over adaptive networks. In: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp. 5425–5429 (2013)

  26. Liu, Y., Tang, W.K.: Enhanced incremental LMS with norm constraints for distributed in-network estimation. Signal Process. 94, 373–385 (2014)

    Article  Google Scholar 

  27. Lopes, C.G., Sayed, A.H.: Diffusion least-mean squares over adaptive networks: formulation and performance analysis. IEEE Trans. Signal Process. 56(7), 3122–3136 (2008)

    Article  MathSciNet  Google Scholar 

  28. Cattivelli, F.S., Lopes, C.G., Sayed, A.H.: Diffusion recursive least-squares for distributed estimation over adaptive networks. IEEE Trans. Signal Process. 56(5), 1865–1877 (2008)

    Article  MathSciNet  Google Scholar 

  29. Cattivelli, F.S., Sayed, A.H.: Multilevel diffusion adaptive networks. In: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, Taipei, Taiwan (2009)

  30. Takahashi, N., Yamada, I., Sayed, A.H.: Diffusion least-mean-squares with adaptive combiners. In: Proceedings of IEEE International Conference on Acoustics. Speech, Signal Processing, Taipei, Taiwan, pp. 2845–2848 (2009)

  31. Cattivelli, F., Sayed, A.: Diffusion LMS strategies for distributed estimation. IEEE Trans. Signal Process. 58(3), 1035–1048 (2010)

    Article  MathSciNet  Google Scholar 

  32. Gharehshiran, O., Krishnamurthy, V., Yin, G.: Distributed energy-aware diffusion least mean squares: game-theoretic learning. IEEE J. Sel. Top. Signal Process. 7(5), 821–836 (2013)

    Article  Google Scholar 

  33. Di Lorenzo, P., Barbarossa, S.: Distributed least mean squares strategies for sparsity aware estimation over gaussian markov random fields. In: Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pp. 5472–5476 (2014)

  34. Chen, J., Sayed, A.H.: Diffusion adaptation strategies for distributed optimization and learning over networks. IEEE Trans. Signal Process. 60(8), 4289–4305 (2012)

    Article  MathSciNet  Google Scholar 

  35. Arablouei, R., Werner, S., Huang, Y.-F., Dogancay, K.: Distributed least mean-square estimation with partial diffusion. IEEE Trans. Signal Process. 62(2), 472–484 (2014)

    Article  MathSciNet  Google Scholar 

  36. Wen, F.: Diffusion LMP algorithm with adaptive variable power. Electron. Lett. 50(5), 374–376 (2014)

    Article  Google Scholar 

  37. Zhao, X., Tu, S.-Y., Sayed, A.H.: Diffusion adaptation over networks under imperfect information exchange and non-stationary data. IEEE Trans. Signal Process. 60(7), 3460–3475 (2012)

    Article  MathSciNet  Google Scholar 

  38. Rastegarnia, A., Bazzi, W., Khalili, A., Chambers, J.: Diffusion adaptive networks with imperfect communications: link failure and channel noise. IET Signal Process. 8(1), 59–66 (2014)

  39. Arenas-Garcia, J., Figueiras-Vidal, A., Sayed, A.: Mean-square performance of a convex combination of two adaptive filters. IEEE Trans. Signal Process. 54(3), 1078–1090 (2006)

    Article  Google Scholar 

  40. Khalili, A., Tinati, M., Rastegarnia, A.: Steady-state analysis of incremental lms adaptive networks with noisy links. IEEE Trans. Signal Process. 59(5), 2416–2421 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Rastegarnia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastegarnia, A., Khalili, A., Bazzi, W.M. et al. An incremental LMS network with reduced communication delay. SIViP 10, 769–775 (2016). https://doi.org/10.1007/s11760-015-0809-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0809-x

Keywords

Navigation