Skip to main content
Log in

A novel dimensionality reduction technique based on kernel optimization through graph embedding

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new method for kernel optimization in kernel-based dimensionality reduction techniques such as kernel principal component analysis and kernel discriminant analysis. The main idea is to use the graph embedding framework for these techniques and, therefore, by formulating a new minimization problem to simultaneously optimize the kernel parameters and the projection vectors of the chosen dimensionality reduction method. Experimental results are conducted in various datasets, varying from real-world publicly available databases for classification benchmarking to facial expressions and face recognition databases. Our proposed method outperforms other competing ones in classification performance. Moreover, our method provides a systematic way to deal with kernel parameters whose calculation was treated rather superficially so far and/or experimentally, in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Balasubramanian, M., Schwartz, E.: The isomap algorithm and topological stability. Science 295(5552), 7 (2002)

    Article  Google Scholar 

  2. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  3. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  4. Bousquet, O., Herrmann, D.: On the complexity of learning the kernel matrix. In: Advances in neural information processing systems pp. 415–422 (2003)

  5. Cai, D., He, X., Han, J., Zhang, H.J.: Orthogonal laplacianfaces for face recognition. IEEE Trans. Image Process. 15(11), 3608–3614 (2006)

    Article  Google Scholar 

  6. Cai, D., He, X., Hu, Y., Han, J., Huang, T.: Learning a spatially smooth subspace for face recognition. In: Proceedings od IEEE Conference on Computer Vision and Pattern Recognition Machine Learning (CVPR’07) (2007)

  7. Chen, B., Liu, H., Bao, Z.: A kernel optimization method based on the localized kernel fisher criterion. Pattern Recogn. 41(3), 1098–1109 (2008)

    Article  MATH  Google Scholar 

  8. Chen, X., Womersley, R., Ye, J.: Minimizing the condition number of a gram matrix. The Department of Applied Mathematics, The Hong Kong Polytechnic University, Preprint (2010)

  9. Chung, F.: Spectral Graph Theory, vol. 92. American Mathematical Society, New York (1997)

    MATH  Google Scholar 

  10. Cristianini, N., Scholkopf, B.: Support vector machines and kernel methods: the new generation of learning machines. Ai Mag. 23(3), 31 (2002)

    Google Scholar 

  11. Frank, A., Asuncion, A.: UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  12. Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, New York (1990)

    MATH  Google Scholar 

  13. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: V. Blondel, S. Boyd, H. Kimura (eds.) Recent Advances in Learning and Control, Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin (2008)

  14. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 1.21. http://cvxr.com/cvx (2011)

  15. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.J.: Face recognition using laplacianfaces. IEEE Trans. Pattern Anal. Mach Intell. 27(3), 328–340 (2005)

    Article  Google Scholar 

  16. Kanade, T., Cohn, J., Tian, Y.L.: Comprehensive database for facial expression analysis. In: Proceedings of the 4th IEEE International Conference on Automatic Face and Gesture Recognition (FG’00), pp. 46- 53 (2000)

  17. Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L., Jordan, M.: Learning the kernel matrix with semidefinite programming. J. Mach. Learn. Res. 5, 27–72 (2004)

    MATH  Google Scholar 

  18. Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., Noble, W., et al.: Kernel-based data fusion and its application to protein function prediction in yeast. In: Proceedings of the Pacific Symposium on Biocomputing, vol. 9, p. 2. World Scientific Singapore (2004)

  19. Li, J., Pan, J., Lu, Z.: Kernel optimization-based discriminant analysis for face recognition. Neural Comput. Appl. 18(6), 603–612 (2009)

    Article  Google Scholar 

  20. Lu, Z., Pong, T.: Minimizing condition number via convex programming. Technical report, University of Washington, Seattle, WA, 2010.8 (2010)

  21. MacDuffee, C.: The Theory of Matrices. Dover Publications, New york (2004)

    Google Scholar 

  22. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48. IEEE (1999)

  23. Muller, K., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12(2), 181–201 (2001)

    Article  Google Scholar 

  24. Niyogi, X.: Locality preserving projections. In: Advances in neural information processing systems 16: Proceedings of the 2003 Conference, vol. 16, p. 153. The MIT Press (2004)

  25. Samaria, F., Harter, A.: Parameterisation of a stochastic model for human face identification. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 138–142. IEEE (1994)

  26. Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, Cambridge (2002)

    Google Scholar 

  27. Schölkopf, B., Smola, A., Müller, K.: Kernel principal component analysis. In: Proceeding of the Artificial Neural Networks, pp. 583–588. Springer: Berlin (1997)

  28. Schölkopf, B., Smola, A., Müller, K.: Kernel principal component analysis. Artificial Neural Networks? ICANN’97 pp. 583–588 (1997)

  29. Varga, R.: Matrix Iterative Analysis, vol. 27. Springer, Berlin (2010)

    Google Scholar 

  30. Wang, F., Sun, J.: Survey on distance metric learning and dimensionality reduction in data mining. Data Mining Knowl. Discov. 29(2), 534–564 (2014)

    Article  Google Scholar 

  31. Wang, J., Lu, H., Plataniotis, K., Lu, J.: Gaussian kernel optimization for pattern classification. Pattern Recogn. 42(7), 1237–1247 (2009)

    Article  MATH  Google Scholar 

  32. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  33. Xiong, H., Swamy, M., Ahmad, M.: Optimizing the kernel in the empirical feature space. IEEE Trans. Neural Netw. 16(2), 460–474 (2005)

    Article  Google Scholar 

  34. Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., Lin, S.: Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 40–51 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Vretos.

Additional information

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 248434 (MOBISERV).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vretos, N., Tefas, A. & Pitas, I. A novel dimensionality reduction technique based on kernel optimization through graph embedding. SIViP 9 (Suppl 1), 3–10 (2015). https://doi.org/10.1007/s11760-015-0832-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0832-y

Keywords

Navigation