Skip to main content
Log in

Incremental augmented complex adaptive IIR algorithm for training widely linear ARMA model

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a distributed adaptive learning algorithm to train the coefficients of a widely linear autoregressive moving average model by measurements collected by the nodes of a network. We assume that each node uses the augmented complex adaptive infinite impulse response (ACA-IIR) filter as the learning rule, and nodes interact with each other under an incremental mode of cooperation. To derive the proposed algorithm, called the incremental ACAIIR (IACA-IIR), we firstly formulate the distributed adaptive learning problem as an unconstrained minimization problem. Then, we apply stochastic gradient optimization argument to solve it and derive the proposed algorithm. We further find the step size range where the stability of the proposed algorithm is guaranteed. We also introduce a reduced-complexity version of the IACA-IIR algorithm. Since the proposed algorithm relies on the augmented complex statistics, it can be used to model both types of complex-valued signals (proper and improper signals). To evaluate the performance of the proposed algorithm, we use both synthetic and real-world complex signals in our simulations. The results exhibit superior performance of the proposed algorithm over the non-cooperative ACA-IIR algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The wind data are available at www.commsp.ee.ic.ac.uk/~mandic/wind-dataset.zip

References

  1. Adali, T., Schreier, P., Scharf, L.: Complex-valued signal processing: the proper way to deal with impropriety. Signal Process. IEEE Trans. 59(11), 5101–5125 (2011)

    Article  MathSciNet  Google Scholar 

  2. Khalili, A., Rastegarnia, A., Bazzi, W.: A collaborative adaptive algorithm for the filtering of noncircular complex signals. In: Telecommunications (IST): 7th International Symposium on, pp. 96–99 (2014)

  3. Xia, Y., Mandic, D., Sayed, A.: An adaptive diffusion augmented CLMS algorithm for distributed filtering of noncircular complex signals. Signal Process. Lett. IEEE 18(11), 659–662 (2011)

    Article  Google Scholar 

  4. Kanna, S., Talebi, S., Mandic, D.: Diffusion widely linear adaptive estimation of system frequency in distributed power grids, In: Energy Conference (ENERGYCON), 2014 IEEE International, pp. 772–778 (2014)

  5. Jahanchahi, C., Mandic, D.: An adaptive diffusion quaternion lms algorithm for distributed networks of 3d and 4d vector sensors, In: Signal Processing Conference (EUSIPCO), 2013 Proceedings of the 21st European, pp. 1–5 (2013)

  6. Khalili, A., Rastegarnia, A., Sanei, S.: Robust frequency estimation in three-phase power systems using correntropy-based adaptive filter. IET Science, Measurement and Technology (2015)

  7. Picinbono, B.: On circularity. IEEE Trans. Signal Process. 42(12), 3473–3482 (1994)

    Article  Google Scholar 

  8. Picinbono, B.: Second-order complex random vectors and normal distributions. IEEE Trans. Signal Process. 44(10), 2637–2640 (1996)

    Article  Google Scholar 

  9. Mandic, D., Goh, V.S.L.: Complex Valued Nonlinear Adaptive Filters: Noncircularity, Widely Linear and Neural Models. Wiley, New Jersey (2009)

    Book  MATH  Google Scholar 

  10. Schober, R., Gerstacker, W., Lampe, L.H.-J.: Data-aided and blind stochastic gradient algorithms for widely linear mmse mai suppression for ds-cdma. Signal Process. IEEE Trans. 52(3), 746–756 (2004)

    Article  MathSciNet  Google Scholar 

  11. Javidi, S., Pedzisz, M., Goh, S.L., Mandic, D.P.: The augmented complex least mean square algorithm with application to adaptive prediction problems. In: 1st IARP Workshop Congress Information Processing, pp. 54–57 (2008)

  12. Xia, Y., CheongTook, C., Mandic, D.P.: An augmented affine projection algorithm for the filtering of noncircular complex signals. Signal Process. 90(6), 1788–1799 (2010)

    Article  MATH  Google Scholar 

  13. Douglas, S.: Widely-linear recursive least-squares algorithm for adaptive beamforming. In: Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on, pp. 2041–2044 (2009)

  14. Xia, Y., Javidi, S., Mandic, D.: A regularised normalised augmented complex least mean square algorithm, In: Wireless Communication Systems (ISWCS): 7th International Symposium on, pp. 355–359 (2010)

  15. Took, C., Mandic, D.: Adaptive iir filtering of noncircular complex signals. IEEE Trans. Signal Process. 57(10), 4111–4118 (2009)

    Article  MathSciNet  Google Scholar 

  16. Wang, X., Wang, S., Ma, J.-J., Bi, D.-W.: Energy-efficient organization of wireless sensor networks with adaptive forecasting. Sensors 8(4), 2604–2616 (2008)

    Article  Google Scholar 

  17. Wang, X., Wang, S., Bi, D.-W., Ma, J.-J.: Distributed peer-to-peer target tracking in wireless sensor networks. Sensors 7(6), 1001–1027 (2007)

    Article  Google Scholar 

  18. Gharavi, H., Hu, B.: Cooperative diversity routing and transmission for wireless sensor networks. Wirel. Sens. Syst. IET 3(4), 277–288 (2013)

    Article  Google Scholar 

  19. Mohamed, M., Wu, W., Moniri, M.: Data reduction methods for wireless smart sensors in monitoring water distribution systems. Procedia Engineering, 70, pp. 1166 – 1172, (2014), 12th International Conference on Computing and Control for the Water Industry, CCWI2013

  20. Harb, H., Makhoul, A., Tawil, R., Jaber, A.: Energy-efficient data aggregation and transfer in periodic sensor networks. Wirel. Sens. Syst. IET 4(4), 149–158 (2014)

    Article  Google Scholar 

  21. Rabbat, M., Nowak, R.: Quantized incremental algorithms for distributed optimization. IEEE J. Select. Areas Commun. 23(4), 798–808 (2005)

    Article  Google Scholar 

  22. Lopes, C., Sayed, A.: Incremental adaptive strategies over distributed networks. IEEE Trans. Signal Process. 55(8), 4064–4077 (2007)

    Article  MathSciNet  Google Scholar 

  23. Liu, Y., Tang, W.K.: Enhanced incremental LMS with norm constraints for distributed in-network estimation. Signal Process. 94, 373–385 (2014)

    Article  Google Scholar 

  24. Abadi, M.S.E., Danaee, A.-R.: Low computational complexity family of affine projection algorithms over adaptive distributed incremental networks. AEU - Int. J. Electron. Commun. 68(2), 97–110 (2014)

    Article  Google Scholar 

  25. Rastegarnia, A., Khalili, A.: Incorporating observation quality information into the incremental lms adaptive networks. Arab. J. Sci. Eng. 39(2), 987–995 (2014)

    Article  Google Scholar 

  26. Khalili, A., Rastegarnia, A., Bazzi, W., Yang, Z.: Derivation and analysis of incremental augmented complex least mean square algorithm. Signal Process. IET 9(4), 312–319 (2015)

    Article  Google Scholar 

  27. Khalili, A., Rastegarnia, A., Bazzi, W.: Incremental augmented affine projection algorithm for collaborative processing of complex signals. In: Information and Communication Technology Research (ICTRC), 2015 International Conference on, pp. 60–63 (2015)

  28. Rahmati, R.G., Khalili, A., Rastegarnia, A., Mohammadi, H.: An adaptive incremental algorithm for distributed filtering of hypercomplex processes. Am. J. Signal Process. 5(2A), 9–15 (2015)

    Google Scholar 

  29. Rastegarnia, A., Khalili, A., Bazzi, W.M., Sanei, S.: An incremental lms network with reduced communication delay. Signal Image Video Process. 10(4), 769–775 (2016)

    Article  Google Scholar 

  30. Rastegarnia, A., Tinati, M.A., Khalili, A.: Steady-state analysis of quantized distributed incremental lms algorithm without gaussian restriction. Signal Image Video Process. 7(2), 227–234 (2013)

    Article  Google Scholar 

  31. Sayed, A.H., Tu, S.-Y., Chen, J., Zhao, X., Towfic, Z.: Diffusion strategies for adaptation and learning over networks. IEEE Signal Process. Mag. 30(3), 155–171 (2013)

  32. Lopes, C., Sayed, A.: Diffusion least-mean squares over adaptive networks: formulation and performance analysis. Signal Process. IEEE Trans. 56(7), 3122–3136 (2008)

    Article  MathSciNet  Google Scholar 

  33. Cattivelli, F., Sayed, A.: Diffusion lms strategies for distributed estimation. Signal Process. IEEE Trans. 58(3), 1035–1048 (2010)

    Article  MathSciNet  Google Scholar 

  34. Abdolee, R., Champagne, B., Sayed, A.H.: Diffusion LMS strategies for parameter estimation over fading wireless channels. In: Proceedings of IEEE International Conference on Communications (2013)

  35. Kreutz-Delgado, K.: The Complex Gradient Operatorand the CR-Calculus, Lecture Suppl. ECE275A, pp. 1–74, (2006)

  36. Tsitsiklis, J., Bertsekas, D., Athans, M.: Distributed asynchronous deterministic and stochastic gradient optimization algorithms. Autom. Control IEEE Trans. 31(9), 803–812 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Treichler, J.R., Johnson Jr., C.R., Larimore, M.J.: Theory and Design of Adaptive Filters. Wiley-Interscience, New York (1987)

    MATH  Google Scholar 

  38. Regalia, P.A.: Adaptive IIR Filtering in Signal Processing and Control. Marcel Dekker, New York (1994)

    MATH  Google Scholar 

  39. Navarro-Moreno, J.: Arma prediction of widely linear systems by using the innovations algorithm. IEEE Trans. Signal Process. 56(7), 3061–3068 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azam Khalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, A., Rastegarnia, A., Bazzi, W.M. et al. Incremental augmented complex adaptive IIR algorithm for training widely linear ARMA model. SIViP 11, 493–500 (2017). https://doi.org/10.1007/s11760-016-0986-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0986-2

Keywords

Navigation