Skip to main content
Log in

Finite dictionary techniques for MSER equalization in RKHS

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Adaptive channel equalization is a signal processing technique to mitigate inter-symbol interference in a time dispersive channel. For adaptive equalization, minimum mean square error (MMSE) criterion-based reproducing kernel Hilbert spaces (RKHS) approaches such as the kernel least mean squares (KLMS) algorithm and its variants have been suggested in the literature for nonlinear channels. Another optimality criterion, based on minimum bit/symbol error rate (MBER/MSER), is a better choice for adapting an equalizer as compared to MMSE criterion. A kernel-based minimum symbol error rate (KMSER) equalization algorithm combines minimum symbol error rate (MSER)-based approaches with RKHS techniques. However, most algorithms in RKHS such as KMSER/KLMS require infinite storage requirement and hence cannot be practically implemented. To curtail the infinite memory requirement, and make adaptive algorithm suitable for implementation with finite memory and processing power, we propose quantized KMSER (QKMSER) and fixed-budget quantized KMSER (FBQKMSER)-based equalizers in this paper. In this paper, we derive the dynamical equation for MSE evolution of the QKMSER and FBQKMSER and find their performance to be asymptotically close to the MSE behavior of the KMSER. Also, it is found via simulations that the tracking performance of FBQKMSER is better than all the compared algorithms in this paper which is particularly useful for non-stationary channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Proakis, J.G.: Intersymbol Interference in Digital Communication Systems. Wiley (2003). doi:10.1002/0471219282.eot409

  2. Jahromi, M.N.S., Salman, M.S., Hocanin, A., Kukrer, O.: Convergence analysis of the zero-attracting variable step-size LMS algorithm for sparse system identification. Signal Image Video Process. 9(6), 1353–1356 (2015)

    Article  Google Scholar 

  3. Yeh, C.-C., Barry, J.R.: Adaptive minimum bit-error rate equalization for binary signaling. IEEE Trans. Commun. 48(7), 1226–1235 (2000)

    Article  Google Scholar 

  4. Chen, S., Tan, S., Lei, X., Hanzo, L.: Adaptive minimum error-rate filtering design: a review. Signal Process. 88(7), 1671–1697 (2008)

    Article  MATH  Google Scholar 

  5. Bhatia, V., Mulgrew, B., Georgiadis, A.T.: Stochastic gradient algorithms for equalisation in \(\alpha \)-stable noise. Signal Process. 86(4), 835–845 (2006)

    Article  MATH  Google Scholar 

  6. Chen, H., Gong, Y., Hong, X., Chen, S.: Adaptive nonlinear equalizer using a mixture of Gaussian-based online density estimator. IEEE Trans. Veh. Technol. 63(9), 4265–4276 (2014)

    Article  Google Scholar 

  7. Ma, W., Chen, B., Hua, Q., Zhao, J.: Sparse least mean p-power algorithms for channel estimation in the presence of impulsive noise. Signal Image Video Process. 10(3), 503–510 (2016)

    Article  Google Scholar 

  8. Eweda, E., Zerguine, A.: New insights into the normalization of the least mean fourth algorithm. Signal Image Video Process. 7(2), 255–262 (2013)

    Article  Google Scholar 

  9. Eweda, E., Bershad, N.J., Bermudez, J.C.M.: Stochastic analysis of the least mean fourth algorithm for non-stationary white gaussian inputs. Signal Image Video Process. 8(1), 133–142 (2014)

    Article  Google Scholar 

  10. Gong, M., Chen, F., Hua, Y., Zhaohua, L., Liujun, H.: Normalized adaptive channel equalizer based on minimal symbol-error-rate. IEEE Trans. Commun. 61(4), 1374–1383 (2013)

    Article  Google Scholar 

  11. Benedetto, S., Biglieri, E.: Nonlinear equalization of digital satellite channels. IEEE J. Sel. Areas Commun. 1(1), 57–62 (1983)

    Article  Google Scholar 

  12. Stepniak, G., Siuzdak, J., Zwierko, P.: Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE. IEEE Photon. Technol. Lett. 25(16), 1597–1600 (2013)

    Article  Google Scholar 

  13. Ying, K., Yu, Z., Baxley, R.J., Zhou, G.T.: Nonlinear distortion mitigation in visible light communications. IEEE Wirel. Commun. 22(2), 36–45 (2015)

    Article  Google Scholar 

  14. Banelli, P., Cacopardi, S.: Theoretical analysis and performance of OFDM signals in nonlinear AWGN channels. IEEE Trans. Commun. 48(3), 430–441 (2000)

  15. Liu, W., Pokharel, P.P., Principe, J.C.: The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 56(2), 543–554 (2008)

    Article  MathSciNet  Google Scholar 

  16. Liu, W., Pokharel, P.P., Principe, J.C.: Kernel affine projection algorithms. EURASIP J. Adv. Signal Process. 2008(1), 784292 (2008)

    Article  MATH  Google Scholar 

  17. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)

    Article  MathSciNet  Google Scholar 

  18. Chen, B., Zhao, S., Zhu, P., Principe, J.C.: Quantized kernel least mean square algorithm. IEEE Trans. Neural Netw. Learn. Syst. 23(1), 22–32 (2012)

    Article  Google Scholar 

  19. Zhao, S., Chen, B., Zhu, P., Príncipe, J.C.: Fixed budget quantized kernel least-mean-square algorithm. Signal Process. 93(9), 2759–2770 (2013)

    Article  Google Scholar 

  20. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2002)

    Google Scholar 

  21. Bouboulis, P., Theodoridis, S.: Extension of Wirtinger’s calculus to reproducing kernel Hilbert spaces and the complex kernel LMS. IEEE Trans. Signal Process. 59(3), 964–978 (2011)

    Article  MathSciNet  Google Scholar 

  22. Bouboulis, P., Theodoridis, S., Mavroforakis, M.: The augmented complex kernel LMS. IEEE Trans. Signal Process. 60(9), 4962–4967 (2012)

    Article  MathSciNet  Google Scholar 

  23. Parreira, W.D., Bermudez, J.C.M., Richard, C., Tourneret, J.-Y.: Stochastic behavior analysis of the Gaussian kernel least-mean-square algorithm. IEEE Trans. Signal Process. 60(5), 2208–2222 (2012)

    Article  MathSciNet  Google Scholar 

  24. Mitra, R., Bhatia, V.: A kernel based technique for MSER equalisation for non-linear channels. In: EUSIPCO 2015, pp. 1461–1465 (2015)

  25. Mitra, R., Bhatia, V.: Adaptive sparse dictionary based kernel minimum symbol error rate post-distortion for nonlinear LEDs in visible light communications. IEEE Photon. J. 8(4), 472–484 (2016)

    Google Scholar 

  26. Chen, B., Zhao, S., Zhu, P., Principe, J.C.: Quantized kernel recursive least squares algorithm. IEEE Trans. Neural Netw. Learn. Syst. 24(9), 1484–1491 (2013)

    Article  Google Scholar 

  27. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. CRC Press, Boca Raton (1986)

    Book  MATH  Google Scholar 

  28. Chen, B., Liang, J., Zheng, N., Príncipe, J.C.: Kernel least mean square with adaptive kernel size. Neurocomputing 191, 95–106 (2016)

    Article  Google Scholar 

  29. Bhatia, V., Mulgrew, B.: Non-parametric likelihood based channel estimator for Gaussian mixture noise. Signal Process. 87(11), 2569–2586 (2007)

    Article  MATH  Google Scholar 

  30. Miramirkhani, F., Uysal, M.: Channel modeling and characterization for visible light communications. IEEE Photon. J. 7(6), 1–16 (2015)

    Article  Google Scholar 

  31. Elgala, H., Mesleh, R., Haas, H.: An LED model for intensity-modulated optical communication systems. IEEE Photon. Technol. Lett. 22(11), 835–837 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rangeet Mitra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, R., Bhatia, V. Finite dictionary techniques for MSER equalization in RKHS. SIViP 11, 849–856 (2017). https://doi.org/10.1007/s11760-016-1031-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1031-1

Keywords

Navigation