Skip to main content
Log in

A parallel thinning algorithm based on stroke continuity detection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Thinning algorithms often cause stroke distortions at the crosses or intersections of strokes, which lead to bad results in pattern recognition tasks. In order to overcome these drawbacks, this paper proposes a parallel thinning algorithm based on stroke continuity detection. In the algorithm, before it uses the conditions of parallel algorithms to delete a boundary point, it first detects whether the boundary point is a reserved point to keep stroke’s continuity or not. Consequently, it can produce a skeleton with good symmetry, control the large deformation at the cross or intersection of strokes, and make a better skeleton more quickly. Moreover, it is practically immune to noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Moayer, B., Fu, K.S.: A syntactic approach to fingerprint pattern recognition. Pattern Recognit. 7, 1–23 (1975)

    Article  MATH  Google Scholar 

  2. Lantuejoul, C.: Skeletonization in quantitative metallography. In: Haralick, R.M., Simon, J.C. (eds.) Issues in Digital Image Processing, pp. 107–135. Sijthoff and Noordoff, Amsterdam (1980)

    Chapter  Google Scholar 

  3. Ye, Q.-Z., Danielsson, P.E.: Inspection of printed circuit boards by connectivity preserving shrinking. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 737–742 (1988)

    Article  Google Scholar 

  4. Kwok, P.C.K.: A thinning algorithm by contour generation. Commun. ACM. 31(7), 1314–1324 (1988)

    Article  Google Scholar 

  5. Blum, H.: A transformation for extracting new descriptors of shape. In: Watheen Dunn, W. (ed.) Models for the Perception of Speech and Visual Forms. MIT Press, Cambridge (1967)

    Google Scholar 

  6. Pavlidis, T., Ali, F.: Computer recognition of handwritten numerals by polygonal approximation. IEEE Trans. Syst. Man Cybern. 5(6), 610–614 (1975)

    Article  MATH  Google Scholar 

  7. Bi, J.T.: A novel thinning algorithm of 3D image model based on spatial wavelet interpolation. J. Comput. 8(11), 3012–3019 (2013)

    Article  Google Scholar 

  8. Couprie, M., Bertrand, G.: Isthmus based parallel and symmetric 3D thinning algorithms. Graph. Models 80, 1–15 (2015)

    Article  MATH  Google Scholar 

  9. Arcelli, C., Sannitidi. Baya, G.: An one-pass two operation process to detect the skeletal pixels on the 4-distance transform. IEEE Trans. Pattern Anal. Mach. Intell. 11(4), 411–414 (1989)

    Article  Google Scholar 

  10. Arcelli, C., Sannitidi.Baya, G.: Ridge points in Euclidean distance maps. Pattern Recognit. Lett. 13, 237–243 (1992)

    Article  Google Scholar 

  11. Thiel, E.: Les distances de Chanfrein en analyse d’images: Fondements et Applications. Thse. Universit Joseph FOURIER. Grenoble I. 21 (1994)

  12. Zou, J.J., Yan, H.: Skeletonization of ribbon-like shapes based on regularity and singularity analyses. IEEE Trans. Syst. Man Cybern. B: Cybern. 31(3), 401–407 (2001)

    Article  Google Scholar 

  13. Guo, Z., Hall, R.W.: Parallel thinning with two subiteration algorithm. Commun. ACM 32(3), 359–373 (1989)

    Article  MathSciNet  Google Scholar 

  14. Hall, R.W.: Fast parallel thinning algorithms: parallel speed and connectivity preservation. Commun. ACM 32(3), 124–131 (1989)

    Article  MathSciNet  Google Scholar 

  15. Holt, C.M., Stewart, A., Clint, M., Perrott, R.H.: An improved parallel thinning algorithm. Commun. ACM 29,(3), 239–242 (1987)

    Google Scholar 

  16. Chu, Y.K., Suen, C.Y.: An alternate smoothing and stripping algorithm for thinning digital binary patterns. Signal Process. 11, 207–222 (1986)

    Article  Google Scholar 

  17. Naccache, N.J., Shinghal, R.: SPTA: a proposed algorithm for thinning binary patterns. IEEE Trans. Syst. Man Cybern. SMC 14, 409–418 (1984)

    Article  Google Scholar 

  18. Xia, Y.: Skeletonization via the realization of the fire front’s propagation and extinction in digital binary shapes. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 11, 1076–1086 (1989)

    Article  Google Scholar 

  19. Hilditch, C.J.: Linear skeleton from square cupboards. In: Meltzer, B., Michie, D. (eds.) Machine Inelligence, pp. 403–420. American Elsevier, New York (1969)

    Google Scholar 

  20. Rutovitz, D.: Pattern recognition. J. R. Stat. Soc. 129, 504–530 (1966)

    Google Scholar 

  21. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27(3), 236–239 (1984)

    Article  Google Scholar 

  22. Deutsch, E.S.: Thinning algorithm on rectangular, hexagonal, and triangular arrays. Commun. ACM 15(9), 827–837 (1972)

    Article  Google Scholar 

  23. Lam, L., Lee, S.W., Suen, C.Y.: Thinning methodologies: a comprehensive survey. IEEE Trans. Pattern Anal Mach. Intell. 14(9), 869–885 (1992)

    Article  Google Scholar 

  24. Davies, E.R., Plummer, A.P.: Thinning algorithms: a critique and a new methodology. Pattern Recognit. 14(1), 53–63 (1981)

    Article  MathSciNet  Google Scholar 

  25. Zhao, M., Yan, H.: Adaptive thresholding method for binarization blueprint images. In: Proceedings of the Fifth International Symposium on Signal Processing and Its Applications. (ISSPA”99) 2, pp. 931–934 (1999)

  26. Trier, O.D., Taxt, T.: Evaluation of binarization methods for document images. IEEE Trans. Pattern Anal. Mach. Intell. 17(3), 312–315 (1995)

    Article  Google Scholar 

  27. Chang, F., Liang, K.-H., Tan, T.-M., Hwan, W.-L.: Binarization of document images using Hadamard multiresolution analysis. In: Proceedings of the Fifth International Conference on Document Analysis and Recognition. (ICDAR’99) pp. 157–160 (1999)

  28. Wolf C., Doermann, D.: Binarization of low quality text using a Markov random field model. In: Proceedings of 16th International Conference on Pattern Recognition. 3, pp. 160–163 (2002)

  29. Chigusa, Y., Suzuki, K., Tanaka, M.: An image binarization and reconstruction with resistive network. In: Proceedings of the IEEE International Symposium on Circuits and Systems. (ISCAS’94). 6, pp. 261–264 (1994)

  30. Gritzman, A.D., Aharonson, V., Rubin, D.M., et al.: Automatic computation of histogram threshold for lip segmentation using feedback of shape information. Signal, Image Video Process. 10(5), 869–876 (2016)

    Article  Google Scholar 

  31. Singla, A., Patra, S.: A fast automatic optimal threshold selection technique for image segmentation. Signal, Image Video Process. (2016). doi:10.1007/s11760-016-0927-0

  32. Sowmya, V., Govind, D., Soman, K.P.: Significance of incorporating chrominance information for effective color-to-grayscale image conversion. Signal, Image Video Process. (2016). doi:10.1007/s11760-016-0911-8

  33. Yildiz, K.: Dimensionality reduction-based feature extraction and classification on fleece fabric images. Signal, Image Video Process. (2016). doi:10.1007/s11760-016-0939-9

  34. Mahmoudpour, S., Kim, M.: No-reference image quality assessment in complex-shearlet domain. Signal Image Video Process. 10(8), 1465–1472 (2016)

    Article  Google Scholar 

  35. Chen, Y.S.: The use of hidden deletable pixel detection to obtain bias-reduced skeletons in parallel thinning. In: Proceedings of the 13th International Conference on Pattern Recognition, 1996. 2, pp. 91–95, 25–29 (1996)

Download references

Acknowledgements

This paper is supported by National Natural Science Foundation of China (Nos. 11501584, 61471132, 61372173), Guangzhou Key Lab of Body Data Science (No. 201605030011), Guangdong Province Data Science and Engineering Research Center’s Open Fund Project (No. 2016KF02), Guangdong province Medical science and technology research fund project (No. A2016147), and the Training program for outstanding young teachers in higher education institutions of Guangdong Province (No. YQ2015057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingo Wing-Kuen Ling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Chen, Y., Yang, Z. et al. A parallel thinning algorithm based on stroke continuity detection. SIViP 11, 873–879 (2017). https://doi.org/10.1007/s11760-016-1034-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1034-y

Keywords

Navigation